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Abstract—In many prediction problems, it is beneficial to
obtain confidence estimates for the classification output. We
consider the problem of estimating confidence sets in multi-
class classification of real life datasets. Building on the theory
of conformal predictors, we derive a class-conditional conformal
predictor. This allows us to calibrate the confidence estimates
in a class specific fashion, resulting in a more precise control
of the prediction error rate for each class. We show that the
class-conditional conformal predictor is asymptotically valid,
and demonstrate that it indeed provides better calibration and
efficiency on benchmark digit recognition datasets. In addition,
we apply the class-conditional conformal predictor to a biolog-
ical dataset for predicting localizations of proteins in order to
demonstrate its performance in bioinformatics applications.

I. INTRODUCTION

In many machine learning problems, not only the set of
predictions, but also the confidence level of the predictions
are needed. For example, in the application of recognising
handwritten digits from 0 to 9, typical classifiers, which we
refer to as simple predictors, output either a most likely label
(i.e., 5 for a nearest-neighbor classifier) or a ranking of all
labels (i.e., (5, 7, 0, · · · ) for a multi-class SVM classifier) with
a classifier score attached to each label for a new example. In
contrast, confidence predictors predict a subset of ranked labels
with a given confidence level, e.g., a subset of predicted labels
(5, 7) at a confidence level 95% usually indicates at least 95%
certainty about the true label being included in the set (5, 7).
The confidence level can effectively inform domain experts to
what extent they can trust the predictions.

An essential problem for confidence predictors is how to
interpret the confidence level and its relation to the prediction
error rate in a probabilistic way. A conformal predictor, intro-
duced in [1], is a confidence predictor with a few additional
requirements that is able to control the prediction error rate by
a preset confidence level 1−ε (or equivalently, an error rate ε).
It essentially calibrates the output of a simple predictor into
a p-value, which reflects the significance of a new example
belonging to a class. Then a prediction set Γε, which is a subset
of class labels, can be generated according to the p-values
and ε for the new example. The most remarkable property of
the conformal predictor, which is called validity [1], is the
ability to guarantee that the true label of the new example is
included in the prediction set Γε with a probability of at least
1−ε. In other words, when enough examples are available, the
prediction error rate is no more than ε when we expand the

set of predictions to Γε. Validity is essential to any confidence
predictors because the error rate can be effectively controlled.

However, we sometimes require the error rate in individual
classes to be controlled. In the handwritten digits problem,
the overall error rate may be well controlled to be no more
than ε, but the error rate for predicting a particular digit may
be significantly different. This is because the examples are
drawn from distributions conditioned on the classes. This phe-
nomenon may have severe consequences in some applications
if it cannot be corrected. For example, in biological research,
control of both false positives and false negatives is equally
important for survival of patients in a cancer diagnostic test
using genomic data.

In this paper, we propose a variant of the conformal predic-
tor, called the inductive class-conditional conformal predictor,
which controls the class-specific error rate without violating
the overall validity. We apply the algorithm specifically to
multi-class classification problem, where a significant differ-
ence in error rate between classes can be frequently observed.
For this purpose, we employ the classic linear SVM [2] as the
simple predictor and extend it to deal with multi-class problem
using the one-against-the-rest method [3]. We also design a
logistic loss-based nonconformity measure. The problem of
controlling the error rate in subsets of examples was considered
in [4]. This study discussed several conditional conformal
predictors in general, but only verified these for the binary
classification problem. In addition, the prediction efficiency,
which is the average size of prediction set required to achieve
a certain confidence level, was not evaluated.

In order to verify the performance of the class-conditional
predictor, we first demonstrate the significant bias in error rate
between classes for the original conformal predictor [1] on
two handwritten digits datasets: MNIST [5] and USPS [6].
Then we apply the class-conditional conformal predictor to
the same datasets, and illustrate the improvement in the class-
specific validity and prediction efficiency. In addition, the
class-conditional conformal predictor is also validated on a
biological dataset for predicting localizations of proteins in
bacteria, called PSORT dataset [7], [8], which illustrates its
potential applications in bioinformatics studies.

In Section II, we review the conformal predictor, propose
the class-conditional conformal predictor, and discuss its va-
lidity. In Section III, we present and discuss our experimental
results. Finally, we conclude the paper in Section IV.



II. METHODS

In this section, we first review the inductive conformal
predictor proposed in [1] and its validity. Based on this, we
propose an inductive class-conditional conformal predictor,
which improves the control of error rates within each class. We
then discuss both the overall and class-specific validity of the
proposed algorithm. Finally we consider the specific choice of
applying the one-against-the-rest SVMs [2], [3] as the predictor
and the logistic loss as the nonconformity measure to the multi-
class classification problem.

A. Inductive Conformal Predictor

Conventionally, we use z = (x, y) to denote an example z
comprising features x and a class label y, which belong to the
feature space X and label space Y, respectively. A sequence
of examples with known labels ω := {z1, · · · , zn−1} form the
training set, while zn = (xn, yn) represents the test example
with unknown label yn. A general confidence predictor Γ
predicts yn with a subset of labels Γε(ω, xn) ⊆ Y, which
we call a prediction set, at a confidence level 1 − ε (or an
error rate ε) [9].

The inductive conformal predictor (ICP) defined in [1]
splits the training set ω into a learning set {z1, · · · , zl} of
size l, and a calibration set {zl+1, · · · , zn−1} of size n− l−1.
The ICP determined by the nonconformity measure A [1] is
the confidence predictor Γε(ω, xn) that includes the set of all
labels y ∈ Y such that

pyn > ε

where

pyn =
|{i = l + 1, · · · , n, αi ≥ αn}|

n− l
(1)

αi :=A({z1, · · · , zl}, zi), i = l + 1, · · · , n− 1 (2)
αn :=A({z1, · · · , zl}, (xn, y)) (3)

This algorithm can be interpreted from a hypothesis testing
point of view. A null hypothesis is established by assuming a
label y ∈ Y for the new example: H0 : yn = y. The test statis-
tic is defined as the nonconformity measure A, which measures
the dissimilarity of an example (x, y) against the examples in
the learning set {z1, · · · , zl}. An empirical null distribution of
nonconformity scores {αi : i = l+1, · · · , n−1} is formed by
testing every example in the calibration set against the learning
set. The score αn for (xn, y) is then compared with the null
distribution to generate the p-value pyn, which is the proportion
of the calibration examples that conform worse than (xn, y).
This procedure is usually called calibration. If the p-value pyn
is greater than the preset threshold ε, then we must accept H0.
In other words, the prediction set must include y.

B. Validity of the Inductive Conformal Predictor

Intuitively, a confidence predictor Γ is valid if the prob-
ability of the true label yn being not in the prediction set
Γε(ω, xn) is no more than ε. The formal and systematic
definition of validity is given in [1]. We only review the
asymptotical validity here. Assuming that the examples in ω
are observed and predicted sequentially, the confidence predic-
tor Γ is asymptotically valid if any exchangeable probability

distribution P on Z∞ generating examples ω = (z1, z2, · · · )
and any significance level ε satisfy:

lim
n→∞

Errεn(Γ, ω)

n
≤ ε (4)

with probability one, where Errεn(Γ, ω) is the total number
of errors made during the n examples. An error occurs if the
true label of a test example is not in the prediction set. The
validity of the conformal predictor was proved by formalizing
Informal Proposition 1 in Appendix A in [9], which claims:

Proposition 2.1: Suppose N is large, the variables
z1, · · · , zN are exchangeable, and En is an ε-rare event
(P (En|{z1, · · · , zn}) ≤ ε) for n = 1, · · · , N . Then the law
of large numbers applies: with high probability, no more than
approximately the fraction ε of the events E1 · · · , EN will
occur.

In the ICP, the construction of the p-value (Equation 1)
guarantees that making an error is an ε-rare event. Therefore,
Proposition 2.1 can be applied to the ICP when the number
of examples is large, and we immediately have the fraction of
errors no more than ε with high probability (Equation 4).

C. Inductive Class-Conditional Conformal Predictor

Although the ICP controls the overall prediction error rate
well, due to the population bias between classes, the error
rate for each class could be significantly above or below the
desirable ε even when the numbers of both training and test
examples are very large. The ICP always compares the non-
conformity score αn for the new example against the same set
of nonconformity measure formed by all calibration examples
regardless of the tested label y. However, from the hypothesis
testing point of view, when a class has its null distribution
different from the combined one, testing against the common
null distribution may lead to overestimates or underestimates of
the p-values with respect to the class, which further affects the
error rate in the class. Therefore, we introduce a conformal pre-
dictor involving a class-specific calibration procedure, which
we call the inductive class-conditional conformal predictor
(ICCCP), to counter this problem.

1) Class-specific calibration: The ICCCP is the same as
the ICP except that the calibration procedure is defined as:

pyn :=
|{i = l + 1, · · · , n : αi ≥ αn and yi = y}|

n− l
(5)

where αi and αn are the same as in (2) and (3) respectively.
The major difference between the ICCCP and the ICP is that
the null distribution of the nonconformity measure is class-
specific in the ICCCP. For the tested label y, only the scores
from the examples whose label is y are used to form the null
distribution for calibration.

2) Defining the nonconformity measure A: In our algo-
rithm, we employ the one-against-the-rest SVMs [3] as the
simple predictor. Note that the linear SVM with L2-regularized
and L2-loss implemented in LIBLINEAR [10] is used here due
to the large scale of the benchmark datasets used in Section III,
and the performance of various SVMs is not our focus. For
each y′ ∈ Y, a binary SVM classifier discriminating class
y′ versus all other classes is built based on the learning set.
We use y′ here to avoid conflicts with the tested label y. By



converting the class labels to binary values {−1, 1} using the
indicator function:

∆(y, y′) =

{
1, if y = y′

−1, otherwise

a new learning set Ly
′

with respect to y′ can be formed:

Ly
′

= {(x1,∆(y1, y
′)), · · · , (xl,∆(yl, y

′))}

and we use
Dy′ : X→ R

to denote the binary SVM classifier trained on Ly
′
. Like

a typical SVM classifier, it takes the features x ∈ X of
an example as the input, and produces a classification score
Dy′(x) ∈ R, which is here the distance between x and the
SVM hyperplane. There are |Y| such binary classifiers in total.
A natural loss function B for these binary classifiers is the
logistic loss:

B(Ly
′
, zi) := 1

1+exp(Dy′ (xi)·∆(yi,y
′))
, i = l + 1, · · · , n− 1

B(Ly
′
, (xn, y)) := 1

1+exp(Dy′ (xn)·∆(y,y′))

When combining the measures from multiple classes in the
one-against-the-rest strategy, we employ the weighted average
method in [1] to define the nonconformity measure A:

αi := λB(Lyi , zi) + (1−λ)
|Y|−1

∑
y′′ 6=yi B(Ly

′′
, zi)

i = l + 1, · · · , n− 1

αn := λB(Ly, (xn, y)) + (1−λ)
|Y|−1

∑
y′′ 6=y B(Ly

′′
, (xn, y))

where we use λ = 0.5. The choice of λ ∈ (0, 1) does not have
an obvious impact on our experimental observations. Using the
definitions of the nonconformity measure above, we investigate
some datasets in Section III.

D. Validity of the Class-Conditional Conformal Predictor

First, the above ICCCP is still asymptotically valid across
all classes, which we refer to as overall validity. Second, the
error rate in each class is also asymptotically no more than the
preset threshold ε, which we refer to as class-specific validity.

Proposition 2.2: The class-conditional conformal predictor
is asymptotically valid, and also asymptotically valid within
each class.

In other words, Equation 4 still holds with probability one,
and it is also true for the examples within each class, that is

lim
n→∞

Errεn(Γ, P, y)

|{i = 1, · · · , n : yi = y}|
≤ ε, y ∈ Y

holds with probability one, where

Errεn(Γ, P, y) := |{i = 1, · · · , n : errεn(Γ, P ) = 1 and yi = y}|

We now discuss the overall validity of the ICCCP following
the idea in Proposition 2.1. First, since the ICCCP algorithm
does not make any additional assumptions on the distribution
of the data, the exchangeability of the data sequence still holds.
Second, although the empirical null distribution for calculating
the p-value is now designed for each class (Equation 5), the
decision regarding whether or not to include a label y in the

prediction set is still restricted by the error rate ε for all
examples. Therefore, the occurrence of the error errεn(Γ, ω)
is still an ε-rare event. Since the ICCCP does not violate any
assumptions in Proposition 2.1, its asymptotical validity across
all classes still holds. Moreover, since the error rate is restricted
by ε in each class, it is also straightforward to prove the ICCCP
is asymptotically valid for each class in the same way. Thus,
the class-specific error rate can be controlled using ICCCP.

III. RESULTS

In this section, we first discuss the results of applying
both the ICP and the ICCCP to two benchmark handwritten
digits datasets, MNIST [5] and USPS [6] from LIBSVM [11].
The results demonstrate the practical importance and effect
of correcting class bias. We then apply the two method
to a biological dataset for predicting localizations of singly
localized proteins in bacteria obtained from PSORTdb [7],
[12], which we refer to as PSORT data, in order to illustrate
the performance of the ICCCP in bioinformatics applications.

A. Evaluation Methods

When the large size and high quality of the examples are
available, the theoretical properties of a conformal predictor
can be well simulated by the empirical performance. Therefore,
we evaluated the validity and prediction efficiency using the
well-studied and large datasets USPS and MNIST. Since a
fixed training set and a test set both with known labels are
provided for the chosen data, we built the conformal predictor
on the training set, and predict every example in the test set,
and calculated the following measures.

1) Validity: Practically, when testing on a sufficiently large
set, the accuracy should be close enough to the preset confi-
dence level 1−ε for any asymptotically valid conformal predic-
tors. Here, the accuracy is simply defined as the proportion of
test examples on which Γε does not make an error. Similarly,
the test accuracy can be calculated for each class separately.

2) Prediction Efficiency: Intuitively, we prefer generating
prediction sets as small as possible without losing accuracy.
For example, including all possible labels in a prediction set
in order to gain 100% accuracy is not practically meaningful.
Therefore, we measure the size of prediction set averaged on
all test examples at the same confidence level. The smaller
the average size of the prediction sets, the more efficient is
a confidence predictor. Similarly, the prediction efficiency can
also be calculated for each class separately.

B. Results on the Handwritten Digits Data

We evaluated our method on the MNIST dataset, which
contains 60,000 training examples and 10,000 test examples,
as well as the USPS dataset, which contains 7,291 training
examples and 2,007 test examples. The ten digits from 0 to
9 represent ten class labels. We describe the results from the
MNIST dataset. We repeated the same analysis for the USPS
data as we did for the MNIST dataset in order to confirm
our conclusions. Similar results were observed for the USPS
dataset and included in the Supplement.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

A
cc

ur
ac

y
Conformal Predictor Validity

 

 

All
0
1
2
3
4
5
6
7
8
9

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

A
cc

ur
ac

y

Conformal Predictor Validity

 

 

All
0
1
2
3
4
5
6
7
8
9

(b)

−0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
Distribution of Nonconformity Measure

Nonconformity Measure

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(P

D
F

)

 

 

All
0
1
2
3
4
5
6
7
8
9

(c)

−0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
Distribution of Nonconformity Measure

Nonconformity Measure

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
(P

D
F

)

 

 

All−Calibration
All−Test
0−Calibration
0−Test
8−Calibration
8−Test

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

A
cc

ur
ac

y

Conformal Predictor Validity

 

 

C
CM
P
OM
EC

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

A
cc

ur
ac

y

Conformal Predictor Validity

 

 

C
CM
P
OM
EC

(f)

Fig. 1. (a) and (b) The overall and class-specific accuracy versus the preset confidence levels on the MNIST dataset. Each colored curve represents either the
overall (black) or the class-specific confidence-accuracy relation. Figure (a) shows the results for the ICP while Figure (b) shows the results for the ICCCP. (c)
The probability density function (PDF) for the distribution of the nonconformity measure on the MNIST dataset. The distribution for each class in the calibration
set (colored curve) is compared with the overall distribution across all classes (black curve). Note that our nonconformity measure based on the logistic loss has
no negative values. The negative values on the x-axis are caused by fitting a PDF to the histogram. (d) The fitted PDF of the nonconformity scores from both
calibration and test sets are compared for the class 0, 8 and the combination of all classes on the MNIST data. (e) and (f) The class-specific accuracy versus
the preset confidence levels on the PSORT dataset. The average accuracy and the error bar of the accuracy across 10 random splits are shown. Figure (e) shows
the results for the ICP while Figure (f) shows the results for the ICCCP.

1) Results for the ICP: As described in Section II-A, we
randomly split the training set into two halves, a learning
set and a calibration set, with balanced class sizes, and built
an inductive conformal predictor. We then predicted all the
test examples. The settings of the classification algorithm
and nonconformity measure were the same as the ICCCP in
Section II-C. In addition, we have repeated the random split of
the training set ten times, but the randomness did not have sig-
nificant impact to the results on the benchmark datasets. There-
fore, we show only the results generated in one random split
for the sake of clarity. The black curve in Figure 1(a) illustrates
the validity of ICP by comparing the test accuracy against
a sequence of preset confidence levels (0.01, 0.02, · · · , 0.99).
The closeness between the overall confidence-accuracy curve
and the diagonal justifies the overall validity of ICP. However,
both significant overestimates and underestimates of accuracy
exist in different classes represented by colored curves.

As we discussed in Section II-C, the poor estimate of
accuracy in the ICP is caused by the differences in the null dis-
tribution of the nonconformity measure between classes. This
is illustrated by the probability density function (PDF) fitted
to the histogram of the nonconformity scores of calibration
examples in Figure 1(c). The PDFs for each class (colored
curve) differ significantly from each other and also from the
overall distribution (black). Thus, calibrating the test examples
against the overall distribution may lead to biased estimates of

the p-values and the error rate in each class.

Since we know the true labels of the test examples, we can
also calculate the nonconformity measure for the test examples
with respect to their true classes instead of an assumed label
(note that this is not possible for real test examples with
unknown labels). When comparing the distribution of the
nonconformity measure between the calibration set and the
test set instead of between different classes, we found that,
within each class, their PDFs are very close to each other.
For example, we have chosen two classes, 0 and 8, whose
accuracy significantly deviates from the ideal line at opposite
directions (Figure 1(a)). In Figure 1(d), the PDFs from the
calibration and test sets within each of the two classes are
almost identical. This phenomenon was observed for every
class, but we do not show every one for the sake of clarity
on the graph. Thus, the significant inter-class difference and
within-class similarity imply that using the class-specific null
distribution of the nonconformity measure may provide a better
estimate of p-values than using the combined null distribution.
This observation demonstrates the necessity of applying class-
conditional calibration.

2) Results for the ICCCP: The experimental settings of
the ICCCP was the same as for the ICP. As we proposed in
Section II-D, the ICCCP should have both overall and class-
specific validity. First, Figure 1(b) demonstrates empirically



that the overall validity still holds, while the accuracy for
each class is significantly closer to the preset confidence
levels compared with Figure 1(a). This observation verifies
the improved control over the error rate in each class.

3) Control of the prediction efficiency: Although the main
purpose of the ICCCP is to control the class-specific error
rate, we also observed the improvement in the control of the
prediction efficiency defined in Section III-A. The results are
shown in the Supplement.

C. Results on PSORT Data

Subcellular localization prediction of proteins might be
helpful to developing potential diagnostic, drug and vaccine
targets against bacterial [7]. PSORT [7], [12] is a dataset for
predicting the localization of proteins in bacteria based on their
amino acid sequence. We validated the ICCCP on the PSORT
data, which contains 5 classes of localization sites, namely cy-
toplasm (C, 278 examples), cytoplasmic membrane (CM, 309
examples), periplasm (P, 276 examples), outer membrane (OM,
391 examples) and extracellular (EC, 190 examples). Since
there is no independent test set available, we randomly split the
entire dataset into a learning set, a calibration set and a test set
with approximately equal size 10 times. We then applied both
the ICP and ICCCP to each random split. In Figure 1(e), we
show the accuracy for each class generated by the ICP. Since
the PSORT dataset is not as large as the handwritten digits
datasets, we show the average accuracy as well as the error
bar of the accuracy across 10 splits at a selected set of con-
fidence levels (0.99, 0.95, 0.90, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01).
The error bars cover all the accuracy in 10 splits. Despite
of random fluctuations in the accuracy, which is likely due
to the relatively small number of examples, the difference
in the accuracy between classes is still significant, especially
between CM and EC. This was also reflected by the significant
difference in recall values between classes in Table 4 in [7].
After applying the ICCCP, Figure 1(f) shows that, not only
the average accuracy is close the diagonal, but also the error
bars of the accuracy for each class overlap with each other.
It implies that the class-specific difference is not significant
any more. The analysis on the PSORT data demonstrates the
potential of applying the ICCCP to bioinformatics data.

IV. CONCLUSION

The conformal predictor is a confidence predictor with
asymptotic validity, that is, the prediction error rate is no
more than a preset threshold with a large number of examples.
Essentially, the validity of the conformal predictor is achieved
by calibrating the nonconformity measure of new examples
against the distribution of the nonconformity measure of
training examples. In many applications, the class-specific
validity is also desired. However, this cannot be guaranteed by
the original conformal predictor since the distribution of the
nonconformity measure is dependent on the class. Therefore,
to control the class-specific error rate, we proposed the induc-
tive class-conditional conformal predictor (ICCCP), where the
nonconformity measure is calibrated in a class-specific fashion.
Both the overall and class-specific validity hold for the ICCCP.
We also designed a logistic loss-based nonconformity measure
and employed one-against-the-rest SVMs to implement the
ICCCP specifically for multi-class prediction problem.

The necessity and performance of the ICCCP were demon-
strated on two handwritten digits datasets and the PSORT
biological dataset for predicting localizations of proteins in
bacteria. First, significant differences in the accuracy between
classes were observed by applying the ICP to the data. This
was caused by the difference in the distribution of the noncon-
formity measure conditioned on classes. In contrast, the high
similarity in the distribution between the training examples
and test examples within each class enables the class-specific
calibration. Subsequently, by applying the ICCCP, the class-
specific validity was significantly improved, and the difference
in the prediction efficiency between classes was also reduced.
According to the results, we conclude that the ICCCP with
class-specific calibration is especially beneficial to correcting
the class-specific error rate, especially for multi-class data with
significant class biases.

ACKNOWLEDGMENT

The authors would like to thank National ICT Australia
(NICTA) for providing funds and support, and also thank Dr.
Adam Kowalczyk, who is the coordinator of the Diagnostic
Genomics group in NICTA, and Dr. Jeffrey Chan in the
Department of Computing and Information System, University
of Melbourne the for their fruitful suggestions on this study.

REFERENCES

[1] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2005.

[2] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf,
“Support vector machines,” Intelligent Systems and Their Applications,
IEEE [see also IEEE Intelligent Systems], vol. 13, no. 4, pp. 18–28,
1998.

[3] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” Neural Networks, IEEE Transactions on,
vol. 13, no. 2, pp. 415–425, Mar. 2002.

[4] V. Vovk, “Conditional validity of inductive conformal predictors,” http:
//arxiv.org/abs/1209.2673, 2012.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[6] J. Hull, “A database for handwritten text recognition research,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, no. 5,
pp. 550–554, 1994.

[7] J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and
F. S. L. Brinkman, “PSORTb v.2.0: Expanded prediction of bacterial
protein subcellular localization and insights gained from comparative
proteome analysis,” Bioinformatics, vol. 21, no. 5, pp. 617–623, Mar.
2005.

[8] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne, “Predicting
subcellular localization of proteins based on their n-terminal amino acid
sequence.” Journal of molecular biology, vol. 300, no. 4, pp. 1005–
1016, Jul. 2000.

[9] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” J. Mach.
Learn. Res., vol. 9, pp. 371–421, Jun. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1390681.1390693

[10] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871–1874, Jun. 2008.

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines (version 2.31),” 2007.

[12] C. S. Ong and A. Zien, “An automated combination of kernels for
predicting protein subcellular localization.” Proceedings of the 8th
Workshop on Algorithms in Bioinformatics (WABI 2008), pp. 186–197,
2008.


