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We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an un-
precedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern
machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an ob-
jective competition based on the genome of the nematode Caenorhabditis elegans. Considering the average of sensitivity and
specificity, the developmental version of mGene exhibited the best prediction performance on nucleotide, exon, and
transcript level for ab initio and multiple-genome gene-prediction tasks. The fully developed version shows superior
performance in 10 out of 12 evaluation criteria compared with the other participating gene finders, including Fgenesh++
and Augustus. An in-depth analysis of mGene’s genome-wide predictions revealed that �2200 predicted genes were not
contained in the current genome annotation. Testing a subset of 57 of these genes by RT-PCR and sequencing, we con-
firmed expression for 24 (42%) of them. mGene missed 300 annotated genes, out of which 205 were unconfirmed.
RT-PCR testing of 24 of these genes resulted in a success rate of merely 8%. These findings suggest that even the gene
catalog of a well-studied organism such as C. elegans can be substantially improved by mGene’s predictions. We also
provide gene predictions for the four nematodes C. briggsae, C. brenneri, C. japonica, and C. remanei. Comparing the resulting
proteomes among these organisms and to the known protein universe, we identified many species-specific gene inventions.
In a quality assessment of several available annotations for these genomes, we find that mGene’s predictions are most
accurate.

[Supplemental material is available online at http://www.genome.org. mGene is available as source code under Gnu Public
License from the project website http://mgene.org and as a Galaxy-based webserver at http://mgene.org/web. Moreover,
the gene predictions have been included in the WormBase annotation available at http://wormbase.org and the project
website.]

A decade ago, an 8-yr-long collaborative effort resulted in the first

completely sequenced genome of a multicellular organism, the

nematode Caenorhabditis elegans (The C. elegans Sequencing Con-

sortium 1998). Today, next-generation technologies have rendered

genome sequencing an almost routine process, allowing in-

dividual scientists to obtain the sequences of their favorite

organisms. The task of annotating new genomes may therefore

move partly into the domain of individual researchers or labora-

tories. Consequently, labor-intense procedures like manual anno-

tation by experts, albeit presumably most precise, are not always

affordable, and highly automated computational methods are

called upon to fill the gap.

Recently, computational gene finding has experienced a ma-

jor breakthrough by adopting discriminative machine learning

techniques (Brent 2008). In contrast to generative gene-finding

methods, which jointly model the DNA sequence itself together

with its segmentation into gene structures, discriminative tech-

niques only attempt to find the most accurate gene segmentation

for a given DNA sequence.9 On sequence-labeling tasks in natural

language processing, as well as genome annotation, discriminative

strategies have been shown to outperform generative hidden

Markov models (HMMs) (Tsochantaridis et al. 2004; DeCaprio

et al. 2007). As one of the first groups to reap this benefit for gene

finding, we developed mSplicer, which accurately predicts the

exon–intron structure given the unspliced mRNA (Rätsch and

Sonnenburg 2007; Rätsch et al. 2007). In this work we present

mGene, which is a complete discriminative gene finder concep-

tually similar to mSplicer. Its strength has been demonstrated in

a fair and independent competition for nematode genome anno-

tation (nGASP) (Coghlan et al. 2008), where it exhibited an ex-

cellent performance compared with 47 submitted predictions from
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9More generally, generative methods model the joint probability Pr(Y, X) of
hidden states Y and observations X, whereas discriminative techniques directly
model the conditional probability Pr(Y/X) of hidden states given observations
(Ng and Jordan 2002).
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17 research groups, including Fgenesh (Salamov and Solovyev

2000), Augustus (Stanke et al. 2006), Craig (Bernal et al. 2007), and

N-Scan (Gross and Brent 2006). mGene’s superior ab initio per-

formance on nucleotide, exon, and transcript levels can be at-

tributed to a combination of design choices, most importantly: (1)

its comprehensive, biologically accurate gene model, (2) the utili-

zation of very precise submodels to recognize genic features (sites

and regions), and (3) the integration of the resulting feature scores

by means of discriminative methods:

(1) The basis of most gene finders is to recognize splice sites,

translation initiation sites (TIS), and translation termination

sites (Stop). mGene surpasses other gene finders in that it

explicitly models a more comprehensive list of signal sites.

First, mGene includes transcription start and stop sites, and

can thus predict untranslated regions (UTRs). Besides con-

stituting valuable biological information in themselves, cor-

rectly predicted UTRs are also expected to improve the over-

all accuracy for protein-coding genes (Brown et al. 2005). For

the same reasons, we also incorporated polyadenylation

(poly(A) sites, which are known to be rather strong signals at

the end of genes) (Liu et al. 2003). As an additional extension,

59 UTRs and 39 UTRs are allowed to be spliced in our model.

Optionally, mGene’s model also represents trans-splicing and

operons, which are especially relevant to nematodes (Graber

et al. 2007).

(2) It is essential for gene finders to detect functional DNA se-

quence features, such as transcription start sites (TSS) or splice

sites, with the highest possible precision. In earlier work

we have shown that support vector machines (SVMs) (cf.

Schölkopf and Smola 2002) with certain higher-order DNA

sequence kernels yield the most accurate translation start,

transcription start, and splice-site recognition (Zien et al. 2000;

Sonnenburg et al. 2006, 2007b; Ben-Hur et al. 2008). We de-

vised such signal detectors for all modeled signals. Further,

content detectors are used to distinguish different types of

segments (e.g., exon or intron) by their typical composition of

substrings. Again, high accuracy is achieved by training SVM

models utilizing high-order dependencies of nucleotides on

large training data sets. To be able to use these SVMs in mGene,

we have decoupled the feature recognition tasks from the gene

structure prediction problem and treated them as independent

binary classification tasks. This allows us to take advantage of

millions of available training examples to improve the recog-

nition accuracy (Sonnenburg et al. 2007a,b).

(3) The detector scores computed by SVMs are combined to form

a globally plausible gene structure. Here, we use hidden semi-

Markov SVMs (HSM–SVMs) (Rätsch and Sonnenburg 2007),

a discriminative learning technique to predict structured out-

puts (see also Tsochantaridis et al. 2005). In contrast to gen-

erative models like HMMs, discriminative approaches do not

model the complex processes that generated the DNA se-

quence, and thereby avoid many potential modeling mistakes.

Like generalized HMMs (gHMMs) (Stormo and Haussler 1994),

HSM–SVMs have semi-Markovian properties, which allow

mGene to utilize the length distributions of the different seg-

ment types.

From a technical perspective, mGene is closely related to recently

proposed discriminative gene-finding systems such as Craig

(Bernal et al. 2007), Conrad (DeCaprio et al. 2007), and Contrast

(Gross et al. 2007). How these approaches conceptually compare

with mGene will be examined in the Discussion section.

Results

Performance evaluation on nGASP data

One of the major difficulties in research on new computational

methods in general is to assess their accuracy in comparison to

previously published ones with as little bias as possible. This is

particularly true for gene finders, since even the very definition of

a gene is still under discussion (Gerstein et al. 2007). Even subtle

differences in evaluation routines may result in substantial differ-

ences in the outcome of a comparison. Finally, standardized data

sets for training and evaluation are often lacking. Controlled ge-

nome annotation assessment projects (Reese et al. 2000; Guigó

et al. 2006; Coghlan et al. 2008) are therefore greatly welcome

occasions for objective evaluations and comparisons of contem-

porary state-of-the-art methods. Moreover, the results and proto-

cols of such competitions are often used as a reference in com-

parisons of improved or newly proposed systems with previous

submissions (e.g., Bernal et al. 2007; Gross et al. 2007).

With mGene, we participated in the nematode genome an-

notation assessment project (nGASP) (Coghlan et al. 2008). The

organizers created strictly controlled conditions, precisely speci-

fying any data that was allowed to be used (details are available

from the competition website and in the Supplemental information).

The performance metrics used were similar to those used in the

EGASP competition (Guigó et al. 2006): Sensitivity and specificity

were determined on the level of nucleotides, exons, transcripts, and

genes, while considering coding regions only. In the nGASP com-

petition a set of highly confirmed genes was used for sensitivity as-

sessment, while specificity was determined on a broader set.

Four categories were distinguished within the competition

(Coghlan et al. 2008):

Category 1—ab initio predictions, allowing only the genomic

sequence as input;

Category 2—predictions that utilize conservation information

from multiple nematode genome alignments;

Category 3—predictions that make use of alignments of pro-

teins, ESTs, and cDNA sequences to the genome; and

Category 4—combiners, which benefit from all available in-

formation including predictions submitted for categories 1–3.

We participated in categories 1–3 with developmental versions of

mGene, which we call mGene.init (dev), mGene.multi (dev), and

mGene.seq (dev), respectively. Since the nGASP competition, we

have continued to refine mGene and have used it to obtain pre-

dictions according to the rules in categories 1 and 3 (denoted by

mGene.init and mGene.seq). The results of the nGASP comparison

together with the performances of the improved system are sum-

marized in Table 1. Shown are the top performing methods only,

which makes differences in prediction accuracy appear small.

However, when all participating methods are compared, perfor-

mance margins can reach 20 percentage points on the gene level

(e.g., when comparing mGene.init [dev] to SNAP) (Korf 2004).

The results in Coghlan et al. (2008) show mGene.init (dev) to

be more specific than all competing methods (including Fgenesh,

Augustus, and Craig) in category 1 (ab initio) on all four levels (see

also Fig. 1; Supplemental Fig. SI). The second most specific gene

finder was Craig, which had significantly lower sensitivity than

mGene. Fgenesh and Augustus achieved higher sensitivity, albeit

at the cost of lower specificity. With respect to the average of

sensitivity and specificity, mGene.init (dev) was the best among all
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category 1 submissions on all levels except for the gene level,

where it was second to Augustus.

The fully developed version mGene.init now makes pre-

dictions that are more accurate than any competing submission to

nGASP in category 1. Figure 1, A–D, illustrates the improvements in

sensitivity and specificity of mGene.init compared with the best

submissions in category 1. Note that these improvements corre-

spond to substantial reductions of the error rate (defined as 1� Sn+Sp
2 )

relative to the second best methods (in parentheses) on each level,

namely, 8.9% for nucleotides (Craig), 13.4% for exons (Fgenesh),

8.7% for transcripts (Augustus), and 4.1% for genes (Augustus).

In category 2, mGene.multi (dev) outperformed all compet-

ing methods including N-Scan and Eugene (Foissac and Schiex

2005) for all evaluation criteria. It is noteworthy that despite the

use of additional information, Eugene and N-Scan were not able to

achieve the performance of the best ab initio gene finders. Only

mGene.multi (dev) managed to improve slightly over the best

methods in category 1. One reason for this unexpected finding

may be suboptimal evolutionary distances between C. elegans and

the aligned genomes (C. briggsae and C. remanei). Importantly, this

reflects the need for accurate ab initio gene finders for genomes

lacking deep alignments to other genomes.

For predictions submitted in category 3, the development

version mGene.seq (dev) only utilized EST and cDNA alignments,

but not the provided protein sequences. Nevertheless, among the

seven competitors in this category, only Augustus and Fgenesh

were able to achieve higher accuracy (defined as average of sensi-

tivity and specificity) than mGene.seq (dev). The current pre-

diction system, called mGene.seq, exploits EST, cDNA, and protein

sequence alignments to improve gene predictions, which are now

most accurate according to the evaluation on exon and gene

level—only second to Fgenesh on the transcript level.

In addition to the global evaluation of predicted gene struc-

tures, it is also interesting to compare prediction systems with re-

spect to individual sequence signals, like transcription/translation

start/stop sites, as well as splice sites. We performed such com-

parisons on the ab initio systems as an indirect assessment of the

underlying sequence features. Figure 1, E–J, shows the improve-

ment of mGene’s gene predictions relative to the top nGASP sub-

missions: We achieved significantly higher accuracy on all signals

except for the cleavage site, where Augustus predictions were

found to be more accurate. A detailed evaluation of the signal

predictions can be found in Supplemental Section A.2.

Genome-wide predictions for C. elegans and discovery
of novel genes

After the evaluation of the competition, the nGASP consortium

was provided with genome-wide predictions by the most accu-

rate gene finders, namely mGene.seq, Augustus, Fgenesh++, and

subsequently also used the combining system Jigsaw (Allen et al.

2006) as a reconciliation method (Coghlan et al. 2008). The

mGene predictions are available on the project website and are

displayed in the WormBase genome browser. Additionally, we

provide the predictions of individual signal sites for two popular

genome browsers (WormBase and UCSC), which may help

human curators to annotate genes in the future.

In Table 2 we present a short summary of the main differences

between the C. elegans annotation WS180 and the gene pre-

dictions by the methods under consideration (more details can be

found in Supplemental Table S4). The basic characteristics (mean

number of exons per gene, median lengths of exons, introns, and

open reading frames [ORFs]) between the catalogs are fairly similar,

with Jigsaw being the closest to the annotation and Fgenesh++

the most different. We observe that Fgenesh++ predicts about 9%

more genes, but about 10% fewer exons per gene and 8% shorter

ORFs than mGene.seq or other gene finders. One possible expla-

nation is that Fgenesh++ splits sequences of exons more often into

separate genes than other gene finders. An alternative plausible

explanation is that most additionally predicted genes have very

few exons (cf. Supplemental Section B). Additionally, we observe

that the gene-finding systems detect between 970 (Jigsaw) and 2988

(Fgenesh++) new genes, i.e., genes not present in WS180, while

missing between 217 (Fgenesh++) and 822 (Jigsaw) annotated

Table 1. Comparison of top performing gene finding systems that participated in the nGASP challenge (Coghlan et al. 2008)

Cat. Method

Nucleotide Exon Transcript Gene

Sn Sp Sn + Sp
2 Sn Sp Sn + Sp

2 Sn Sp Sn + Sp
2 Sn Sp Sn + Sp

2

1 mGene.init 96.78 90.87 93.83 85.11 80.17 82.64 49.59 42.25 45.92 60.73 42.25 51.49
1 mGene.init (dev) 96.85 91.59 94.22 84.17 78.63 81.40 44.30 38.69 41.50 54.25 40.13 47.19
1 Craig 95.54 90.92 93.23 80.17 78.15 79.16 35.70 35.44 35.57 43.72 35.44 39.58
1 Eugene 93.96 89.47 91.72 80.28 73.00 76.64 49.09 28.19 38.64 60.12 28.19 44.16
1 Fgenesh 98.20 87.11 92.65 86.37 73.55 79.96 47.11 34.11 40.61* 57.69 34.11 45.90
1 Augustus 97.01 89.01 93.01 86.12 72.55 79.34 52.89 28.64 40.77* 64.37 34.47 49.42
2 mGene.multi (dev) 97.70 90.91 94.31 85.81 78.30 82.06 51.24 40.87 46.05 62.68 43.83 53.25
2 N-Scan 97.39 88.07 92.73 83.51 70.83 77.17 39.17 27.69 33.43 48.07 28.39 38.23
2 Eugene 96.23 86.48 91.36 82.75 72.82 77.79 50.25 30.19 40.22 61.66 31.36 46.51
3 mGene.seq 98.83 90.09 94.46 92.21 83.45 87.83 65.45 52.49 58.97 80.16 52.44 66.30
3 mGene.seq (dev) 98.71 91.88 95.30 90.99 80.61 85.80 58.68 45.93 52.30 71.66 47.80 59.73
3 Gramene 98.20 95.42 96.81 88.45 71.76 80.11 44.96 19.13 32.04 52.63 28.60 40.62
3 Fgenesh++ 97.57 89.70 93.64 90.43 80.93 85.68 65.62 52.91 59.27 78.54 52.07 65.30*
3 Augustus 98.96 90.52 94.74 92.45 80.20 86.33 69.09 46.45 57.77 80.97 49.95 65.46*

Shown are sensitivity (Sn), specificity (Sp), and their average (each in percent) on nucleotide, exon, transcript, and gene level in categories 1–3 (if several
submissions were made for one method, we chose the version with the best gene level average of sensitivity and specificity). The predictions of mGene.init
and mGene.seq were generated after the deadline but according to the rules of the nGASP challenge. The result of the best performing method within
a category and according to each of the evaluation levels is set in boldface. For reference we also provide the results of the evaluation by the nGASP team
(Coghlan et al. 2008) in Supplemental Table SI. The numbers slightly deviate on the transcript and gene level due to minor differences in the evaluation
criteria. These differences, however, do not change the ranking except in two cases, where the performances are very close together (relevant results are
marked with an asterisk).
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genes. This is consistent with the low sensitivity and high speci-

ficity of Jigsaw, and vice versa for Fgenesh++. A majority of the new

genes predicted by the combiner Jigsaw were also found by the

other three gene-finding systems (82%). mGene missed the fewest

confirmed genes, namely only 0.7% of all confirmed genes. Of its

predicted genes, 809 are neither present in the annotation nor

found by any other gene finder. As we show below, there is good

reason to believe that many of them are genuine.

In total, 11,393 transcripts from the WS180 annotation (i.e.,

48%) completely agreed with a transcript predicted by mGene. The

Figure 1. Improvement of mGene.init ab initio predictions on several evaluation levels: (A) nucleotide, (B) exon, (C) transcript, and (D) gene (each
restricted to coding regions), as well as on selected signals: (E) acceptor splice sites, (F) donor splice sites, (G) TIS, (H) translation termination sites, (I)
transcription start sites (TSS) (620 nt), and (J) cleavage sites (620 nt). mGene.init’s predictions are compared with the predictions of the best submissions
in category 1: Craig, Eugene, Fgenesh, and Augustus. Shown are differences of percent values for sensitivity (Sn; blue), specificity (Sp; green), and their
average (red). Note that Craig and Fgenesh are not able to predict UTRs. We therefore used the predicted translation start and stop as an estimate of gene
start and stop (relevant results are marked with an asterisk).
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proportion of confirmed annotated transcripts that were correctly

predicted is significantly higher (5343/8126, 66%), corresponding

well to the reported transcript level sensitivity on the nGASP test

regions. Annotated transcripts from completely unconfirmed genes

agreed to a considerable lesser extent with mGene’s predictions

(1209/4657, 26%). mGene predicted 2197 novel genes that are not

part of the WS180 annotation. We could associate 621 (28.3%)

of these with InterPro domains. Among those, the seven trans-

membrane chemoreceptors (103 genes) constitute the largest addi-

tion (see Supplemental Section B.2 for further information). Out of

the 297 genes in WS180 missed by mGene, we could only associate

27 (9.1%) with InterPro domains. Intriguingly, 1855 novel genes

show significant protein sequence similarity to mGene gene pre-

dictions in other Caenorhabditis species (see next section).

We then wished to know the fraction of the newly predicted

and missed unconfirmed genes for which experimental evidence

of gene expression could be found. We conducted a set of valida-

tion experiments based on RT-PCR and sequencing of mRNA frag-

ments of selected genes. Following the approach by Siepel et al.

(2007), we considered 57 spliced novel genes that were predicted

by mGene.seq that do not overlap with an annotated protein-

coding gene in WS180. In a second experiment, we selected 24

spliced, unconfirmed protein-coding genes annotated in WS180

that did not overlap with an mGene.seq prediction. If a sequenced

fragment could be mapped unambiguously to the genomic region

of the corresponding gene, we considered the expression of the

gene as experimentally validated. A summary of the experimental

validation is given in Table 3. We can observe that a significantly

larger fraction of novel genes can be validated as compared with

unconfirmed genes missed by mGene.seq and also to previous

validation studies in human (Guigó et al. 2006). In summary, both

experimental and in silico analyses indicate that a large fraction of

newly predicted genes are expressed or even functional, demon-

strating that even the gene catalog of a well-studied organism like

C. elegans can be substantially improved with mGene predictions.

Genome-wide predictions for other nematode genomes

We used the trained system mGene.seq to annotate four other

Caenorhabditis genomes that have recently been sequenced

(www.genome.wustl.edu; R Wilson, pers. comm.): C. briggsae (as-

sembly cb3), C. brenneri (assembly 4.0), C. remanei (assembly

15.0.1), and C. japonica (assembly 3.0.2) (Stein et al. 2003;

Sternberg et al. 2003). The characteristics of the predicted gene

catalogs show large differences, as detailed in

Supplemental Table S5. To assess the quality

of the predictions, we aligned EST sequences

from the four nematodes, obtained from the

NCBI Nucleotide database, against their re-

spective genomes using BLAT (Kent 2002).

We examined the agreement of the pre-

dictions of the four gene-finding methods

mGene.seq, Fgenesh, Augustus, and Jigsaw

with internal exons of the aligned EST

sequences. While this approach may not be

unbiased (in category 3 the same type of in-

formation is actually used to generate pre-

dictions), there does not appear to be an al-

ternative in the absence of an independent

high-quality annotation. The results of the

comparison are given in Figure 2B. We ob-

serve that mGene.seq maintains a relatively

high exon level accuracy of 93%–97% for all organisms, except for

C. briggsae (87%), for which the exon level accuracy is consistently

lower across all gene-finding systems. We find that mGene out-

performs all other gene-finding systems for all organisms, assuring

that the model trained using data from C. elegans is general enough

to yield accurate predictions on related genomes. We also observe

that for organisms for which initially no or few ESTsequences have

been available (for instance C. japonica), mGene can still yield

strong performance (cf. Supplemental Table S7).

We carried out a comparative analysis with Multiparanoid

(Alexeyenko et al. 2006) on the newly predicted proteomes of

C. briggsae (22,542 predictions), C. brenneri (41,129), C. remanei

(31,503), and C. japonica (20,121). This analysis served two pur-

poses: first, to determine gene homology relations, and second, to

estimate the number of species-specific gene creations. We could

identify orthology relations for a proportion of 63%–84% of

a species’ gene set, with C. brenneri being at the bottom and

C. elegans at the top of the list (see Fig. 2; Supplemental Table S8).

Substantial sequence similarity ($50 bits) was found for a pro-

portion of 82%–94% of the predicted protein sets, with C. japonica

ranking lowest. These numbers demonstrate that the vast majority

of predicted proteins have a phylogenetic counterpart in at least

one other species. The genome of C. japonica, which is most distant

from any of the other genomes (Kiontke and Sudhaus 2006), shows

the greatest proportion of potentially species-specific genes

($18%). We followed up on the potential function of species-

specific genes by comparing them to the known protein universe

as defined by the Uniref90 database (Wu et al. 2006) and the re-

cently sequenced satellite nematode, Pristionchus pacificus (Dieterich

et al. 2008). Out of the species-specific gene predictions for

C. remanei, C. japonica, and C. brenneri, only a very small fraction

matched to entries in the Uniref90 database (cf. Supplemental

Table 2. Comparison of the predictions of mGene.seq, Fgenesh++, Augustus, and Jigsaw
to the C. elegans genome annotation WS180

Method
No. of
genes

Exons/gene
(mean)

Median length
[bp] New genes

Missed
genes

Exon Intron ORF All Unique All Conf.

mGene.seq 21,489 6.3 146 65 990 2197 809 297 31
Fgenesh++ 23,368 5.7 146 71 939 2988 974 217 54
Augustus 21,525 6.1 146 64 945 1729 345 704 72
Jigsaw 20,423 6.1 148 64 996 970 8 822 78
WS180 20,133 6.5 147 63 996 0 0 0 0

The first five columns exhibit relatively small differences with respect to basic gene characteristics.
Interestingly, all gene finders predict many genes which are new, i.e., that show no overlap with
a coding sequence from WS180; additionally, many new genes are unique to the given gene finder,
i.e., they do not overlap with any other prediction. We further report the number of missed genes,
i.e., annotated coding sequences that have no predicted counterpart, and among those, the fully
EST/cDNA confirmed ones.

Table 3. Experimental analysis of the difference between the
C. elegans annotation WS180 and mGene.seq predictions

No. of
genes

No.
tested

No.
confirmed

Frac.
confirmed

New genes 2197 57 24 �42%
Missed unconf. genes 205 24 2 �8%

Shown are the number of new genes and unconfirmed genes missed by
mGene.seq relative to WS180, the number of genes considered in vali-
dation experiments, and the number and fraction of such genes that were
verified to have mRNA expression.
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Section C.2). Nevertheless, there are some remarkable exceptions.

For instance, we found 90 C. remanei gene predictions that

show substantial similarity to bacterial genes from the genus

Acinetobacter (soil bacteria) (Gerischer 2008). These predictions

contain introns, which argues against bacterial sequence con-

tamination. Among the species-specific gene predictions for

C. elegans, there are 341 (31.2%) novel genes. Furthermore, among

all novel gene predictions, only 51 match to the Uniref90 data-

base. Hence, the novel genes are highly enriched in the set of

unknown genes, which suggests that they are genuinely novel

(although we cannot exclude that some of these are false-positive

predictions). Generally, we observe no similarity to P. pacificus gene

predictions, which is in agreement with the phylogenetic

position of P. pacificus as an outgroup. This further supports our

interpretation of these Caenorhabditis predictions being species-

specific gene inventions.

Discussion
Despite vast technological and scientific advancements, we are still

not in possession of a single complete and precise gene catalog for

any multicellular organism. This stresses the necessity for progress

in computational gene finding, but also presents an obstacle to it

because it impedes the assessment of concepts and implementa-

tions. It is therefore the great benefit of competitions like nGASP to

provide controlled conditions for fair comparisons of the intrinsic

potential of different systems. It was in such a setting that mGene’s

excellent performance was demonstrated. Further improvements

have consolidated mGene as one of the most accurate gene finders

available, even though since the nGASP competition, other gene-

finding systems might have improved as well.10

The runners-up in the ab initio category, Augustus and

Fgenesh, both use generative training algorithms and have ear-

lier been shown to perform well on human and fly genomes. In

particular, Augustus was one of the best-performing methods in

the ab initio category of the human annotation competition

EGASP (Guigó et al. 2006). In nGASP, the only other participating

discriminative gene finder, Craig, did not perform as well, despite

the fact that it was reported to outperform Augustus on a human

data set (Bernal et al. 2007). The relatively weak performance of

Craig may indicate the importance of good feature models for ac-

curate gene prediction: With Craig, Bernal et al. (2007) attempted

to tackle the gene-finding problem in a single step, simultaneously

learning local feature properties and global characteristics of gene

structures through an integrated training procedure. While this

approach is conceptually appealing, it is very demanding in terms

of computational resources for state-of-the-art discriminative

learning algorithms. It thus prohibits simultaneous use of high-

order signal detectors and large amounts of training data, as was

done in training mGene. The evaluation corroborates the notion

that the disadvantage of simpler signal detectors is not fully

compensated for by Craig’s global parameter optimization strategy.

Recently, two other discriminatively trained methods, Con-

rad (DeCaprio et al. 2007) and Contrast (Gross et al. 2007), were

published. Both have a two-layered architecture similar to mGene

and its predecessor mSplicer (Rätsch et al. 2007). They yielded very

promising results on human and fungal genomes. Unfortunately,

they did not participate in the nGASP competition, and a direct

empirical comparison is therefore pending. However, there are

substantial differences in terms of (1) the underlying model, (2) the

employed feature scores, and (3) the training algorithm: (1) Among

the discriminative gene finders, mGene is the only one that is ca-

pable of predicting UTRs, trans-splicing, and polyadenylation sites.

(2) For the feature detectors, we use SVMs with one or more high-

order DNA sequence kernels (up to order 22) on large sequence

windows (up to l000 bp) to obtain the most accurate models for

segment boundary detection. In contrast, Conrad only uses posi-

tion weight matrices (PWMs; corresponding to order 1) for signal

detection, which have been shown to be suboptimal on such tasks

(Sonnenburg et al. 2006, 2007b). Contrast exploits DNA sequence

features within very small windows (6–30 bp) with SVMs and

simple quadratic kernels considering second order relations.

Well-designed features describing multiple genome alignments,

a strength of Conrad and Contrast in many applications, appear to

be less crucial for nematode gene predictions. (3) The integrative

step in Contrast is based on a standard conditional random field

(CRF) framework that does not allow semi-Markov dependencies

between labels. Consequently, Contrast is unable to model seg-

ment lengths appropriately. Explicit incorporation of length fea-

tures constitutes an improvement of mGene that is comparable to

the advantage of gHMMs over standard HMMs (Burge and Karlin

1998). While mGene uses HSM–SVMs, Conrad is based on semi-

Markov CRFs (Sarawagi and Cohen 2004). Both approaches are

state-of-the-art structured output prediction techniques. Although

the optimization problems solved in the training step differ, their

prediction accuracy has often been found to be similar when

Figure 2. Comparison of the gene sets predicted by mGene.seq for
different nematodes. (A) Number of protein-coding genes predicted for
each organism and the fraction of genes with one-to-one orthologs, other
orthologs with weak, and with no significant protein sequence similarity.
(B) Agreement of internal exons inferred from aligned EST sequences with
exons predicted by mGene.seq, Fgenesh++, Augustus, and Jigsaw. We
counted a predicted exon as correct if both boundaries were correct, and
as a false prediction if it overlapped a region covered by an EST alignment
but did not exactly match an EST-confirmed exon. Shown is the average of
sensitivity and specificity. (C ) Number of orthologous groups (9885)
shared among all five nematodes, as well as the number of additional
orthologous groups shared across subtrees of more closely related species,
which are defined by the corresponding ancestral node.

10We investigated this for Augustus by evaluating gene predictions prepared by
the maintainer (downloaded from http://augustus.gobics.de/predictions/
caenorhabditis/abinitio/). We found the ab initio prediction performance to be
unchanged since the nGASP competition (data not shown).
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compared with the same data, with the same underlying model

(Keerthi and Sundararajan 2007). It remains to be investigated how

the two learning techniques compare for gene finding when

identical features are used.

Due to its discriminative framework and the two-layered ar-

chitecture, mGene is a very flexible system. One advantage of this

is that separate data sets can be used for training its individual parts

(e.g., the signal detectors). In contrast to less modular systems, it

can thus exploit the available data to a fuller extent. As another

benefit, mGene’s architecture readily allows the integration of

additional information from diverse data sources. In the context of

nGASP, we implemented first versions of mGene that utilize se-

quence conservation or known transcript sequences. Although

mGene outperforms its competitors in both corresponding cate-

gories, these versions may not yet fully

exhaust the potential of the input in-

formation sources: For instance, the more

sophisticated features describing multi-

ple alignments used in Contrast and Con-

rad may help to further improve mGene’s

performance. It also appears promising to

include additional features such as epi-

genomic data or transcriptome reads from

next-generation sequencing.

From a biological perspective, the

nGASP competition serves as a case study

of the value of sampling genomes across

one genus. Whole-genome assemblies

(coverage greater than or equal to sixfold)

of five Caenorhabditis species were made

available to nGASP participants. Our gene

finder mGene, which was just trained on

the reference species C. elegans, could ex-

ploit the conservation of genic DNA sig-

nals to accurately annotate the remaining

genomes. This is remarkable if contrasted

with the average protein sequence con-

servation, which is just 78% for the most

distant species pair (C. briggsae and C. ja-

ponica). Consequently, mGene facilitates

whole-genome annotation for related

species, even though they diverged from

their last common ancestor more than

100 Mya (Stein et al. 2003). In summary,

several other comparative sequencing

efforts (e.g., in flies and vertebrates) may

benefit from using mGene as one of the

primary gene-prediction tools.

To make mGene more widely avail-

able to the genome annotation com-

munity we have developed a webserver,

mGene.web at http://mgene.org, which

delivers the functionality to predict genes

on small to moderately sized eukaryotic ge-

nomes using pretrained models for an in-

creasing number of organisms (Schweikert

et al. 2009). Additionally, one can easily

train new models based on uploaded ge-

nomes and preliminary annotations. This

webserver will also serve as a convenient

platform for future advancements, such

as the exploitation of additional sources

of evidence, the prediction of alternative transcript variants, and

the broader applicability of the system to larger genomes.

Methods
We take a two-layer approach to gene finding (Rätsch et al. 2007).
The first layer consists of independent SVM-based signal and
content detectors (Sonnenburg et al. 2006, 2007a,b; Rätsch et al.
2007). In the second layer an HSM–SVM (Rätsch and Sonnenburg
2007) combines the scores of the individual detectors together
with segment length information to form a valid gene prediction
(cf. Fig. 3). We will first describe the ab initio algorithm mGene.init
and subsequently outline the extensions for mGene.multi and
mGene.seq.

Figure 3. In layer 1, mGene scans the genomic sequence using SVM-based detectors trained to
recognize transcription start sites (TSS), translation initiation sites (TIS), acceptor (Ace), and donor
(Don) splice sites, the translation termination site (Stop), and other signals (data not shown). The
detectors assign a score to each candidate site. In combination with additional information, including
outputs of SVMs recognizing exon/intron content, and scores for exon/intron lengths (data not
shown), these signal scores contribute to the cumulative score of a putative gene structure. The bottom
graph (layer 2) illustrates the accumulation of scores for two gene structures shown at the top, where
the score at the end of the sequence is the final score of the gene structure. The contributions from the
individual detector outputs, from segment lengths, as well as from properties of the segments to the
score are adjusted during training using piecewise linear functions (PLiFs; see inset to the right). They are
optimized such that the margin between the true gene structure (shown in green) and all other (false)
isoforms (one of them is shown in red) is maximized. Prediction of genes on new sequences works by
selecting a valid gene structure, as defined by the gene model (cf. inset to the left), with the maximum
cumulative score using dynamic programming (see e.g., Kulp et al. 1996).
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Layer 1: Feature recognition

The core features of our algorithm fall into three distinct classes:
sequence signals (at segment boundaries), sequence content (the
sequence composition of a given segment), and the lengths of the
individual segments. To recognize signals and segment types, we
developed detectors that compute corresponding scores. Here, we
utilize SVMs with string kernels (for review, see Ben-Hur et al.
2008), because they have been shown to perform with superior
accuracy compared with generative methods (like phylogenetic
generalized HMMs), for instance, for splice-site detection and TSS
(Sonnenburg et al. 2006, 2007b). The real-valued scores that SVMs
compute are nonprobabilistic, which makes it difficult to use them
in a generative (and thus probabilistic) framework like gHMMs;
however, corresponding requirements are absent from HSM–SVMs
that we use instead of gHMMs for gene structure prediction. We
devise eight signal detectors and eight content detectors. Each of
them is treated as an independent binary classification task ac-
complished by an SVM.

SVMs and string kernels

SVMs learn to discriminate two classes by finding a large-margin
separation (Ben-Hur et al. 2008). SVMs use task-specific similarity
measures called kernels. In our case, the kernels compare pairs of
sequences in terms of their matching substrings. We use three
different types of string kernels, namely, the spectrum kernel
(Leslie et al. 2002), the weighted degree (WD) kernel (Rätsch et al.
2006), and the WD kernel with shift (WDS kernel) (Rätsch et al.
2005). The spectrum kernel of order d counts all matching d-mers,
irrespective of the position within the sequence; consequently, the
SVM captures the typical sequence composition. The WD kernel
considers matching k-mers for all lengths k from 1 up to d, but only
if they occur at the same position in both sequences. SVMs with
a WD kernel thus model precisely localized motifs. The WDS ker-
nel allows for slightly displaced matches, yet they are down-
weighted relative to matches at the exact corresponding positions.

To train signal and content detectors and to predict with
them, we use an efficient implementation of all three kernels
(Sonnenburg et al. 2007a). It is publicly available in the Shogun
machine learning toolbox (cf. http://shogun-toolbox.org) and
enables large-scale applications.

Signal detectors

With signal detectors we detect specific sequence motifs that occur
around segment boundaries including (1) acceptor and donor
splice sites at the exon/intron boundaries, (2) translation start and
stop sites at the boundaries between UTRs and coding regions, and
(3) transcription start and cleavage sites between intergenic and
genic segments. Moreover, we model polyadenylation consensus
signals, which are characterized by a 6-mer similar to AATAAA
around 20 nucleotides (nt) upstream of the cleavage site. For
C. elegans and other nematodes, it is also important to model trans-
splicing events, which add a splice leader sequence to an in-
dependently transcribed pre-mRNA. While absent or fairly in-
significant in most organisms, this process prevails in nematodes
(e.g., 70% of pre-mRNAs in C. elegans) (Graber et al. 2007). By
modeling trans-splicing events we intend to enhance the identi-
fication of gene starts in nematodes.

Each signal detector distinguishes between true signal sites
and decoy sites. In the case of transcription start and cleavage sites,
any position in the sequence is a possible candidate site. We
therefore generate transcription start and cleavage-site predictions
for each position in the genome. All other segment boundaries are
characterized by certain compulsory consensus sequences, such as

AG for acceptor splice sites. Consequently, training and prediction
are restricted to such candidate sites.

In the case of the trans-splicing detector, we train a classifier
that distinguishes cis-splicing from trans-splicing. Hence, for every
consensus site AG, we compute two scores: acceptor scores and
trans-acceptor scores. They are combined in the second layer in
order to identify true cis-acceptor and trans-acceptor splice sites.

Since most signal motifs occur at specific positions relative to
the segment boundary, we use WD kernels. As some of the signal
motifs are highly variable, we use kernels up to order 22 to capture
high-order dependencies (Sonnenburg et al. 2007b). We consider
relatively long sequence windows around the targeted signals. For
example, we use a window of length 141 nt for splice sites, while
most other gene finders only consider 10–15 nt. Therefore, these
signal detectors do not only recognize motifs in the close vicinity
of the targeted signal site, but also more distantly located patterns
like intronic or exonic splice enhancers or silencers. We have
shown that this strategy leads to a considerable improvement for
splice-site detection when using WD kernels (Sonnenburg et al.
2007b). For TSS, we have found that examining several distinct
regions with different kernels significantly improved classification
accuracy (Sonnenburg et al. 2006). Supplemental Table S9 provides
details about the signal detectors, including the sequence regions
considered and the combination of kernels used. Eventually each
candidate position j for a signal S is furnished with the score from
the appropriate detector, sS

j . The score for locations without the
required consensus for a given signal is set to �‘, thus preventing
its use in the second layer.

Content detectors

Content detectors are designed to recognize the typical sequence
composition of the individual segments. For each of five content
segment classes—intergenic, intercistronic, UTR, coding exon, and
intron—we set up binary, one-against-the-rest classification prob-
lems. To avoid the influence of different length distributions of the
segments on the discrimination, the negative examples are chosen
such that their length distribution equals that of the positive
sequences. We use spectrum kernels, since the position of a sub-
string within a segment does not play an important role in this
case. For each task, four SVMs are trained with spectrum kernels of
order d = 3 to d = 6 (details in Supplemental Table S10). In addition,
we use frame detectors, where the frequency of in-frame 3-mers
and 6-mers is compared against coding exons with a shifted ORF.
For a given candidate segment [ j, j9] of length, j9 � j + 1, we com-
pute SVM scores sC

½ j;j0 � for each content detector C.

Segment lengths

The third type of feature is segment lengths. We separately con-
sider intergenic, intercistronic, 59 UTR exon, trans-exon (distance
between TSS and trans-acceptor), single exon, coding exon (sepa-
rately for first, middle, and last), 39 UTR exon, poly(A)-tail, and
intron segments. The choice of the length-scoring function for
a segment is determined by the recognized signals at the beginning
and end of the segment and is defined in the state model (cf. the
next section).

Layer 2: Gene structure prediction

We combine the individual features using the HSM–SVM ap-
proach, which is conceptually similar to generalized HMMs (Kulp
et al. 1996), as they are both based on a state model with appro-
priate state transitions; yet, in contrast to generative approaches it
is trained discriminatively. The method is described in more detail
in Altun et al. (2003), Tsochantaridis et al. (2005), Rätsch and
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Sonnenburg (2007), and Rätsch et al. (2007). Figure 3 (left inset)
shows a simplified version of the state model used in this work (cf.
Supplemental Section E.4 for the complete model). Here, states
correspond to segment boundaries and are associated with signal
features, while transitions between states are associated with whole
segments. This model accounts for genes starting either with
a transcription start or with a trans-splice site. We distinguish be-
tween SL1 and SL2 trans-splice states, where SL2 states only occur
within operons (they need to be preceded by a gene end and are
reached through an intercistronic transition). SL1 states, on the
other hand, can mark the beginning of any gene, or they can also
be preceded by a transcription start state. A poly(A) state can—
optionally—occur before the cleavage site. The model furthermore
captures UTR splicing.

By applying a semi-Markovian framework, we are able to ex-
ploit higher-order content structure and length preferences. These
types of features are linked to transitions.

Given a genomic DNA sequence x, we intend to compute
a segmentation of it. Formally, such a segmentation y can be de-
scribed by a sequence of segments ( j, j9, S, S9, C) characterized by
start and end positions j and j9, respectively, the types of the signals
S and S9 at these positions, and the class C of the segment. Each
segment must begin exactly one position downstream from the
end of the previous one; together, they need to cover x. Naturally,
the signal at the beginning of any segment needs to be identical to
that at the end of the preceding segment.

In the HSM–SVM framework, we turn the label sequence
prediction task into a ranking problem: We learn a function
Gu(x,y9), parameterized by u, which assigns a real-valued score to
any pair of DNA x and label sequence y. The prediction for a se-
quence x is then given by the highest scoring segmentation, y = arg
maxy9 Gu(x, y9), which can be efficiently computed by a dynamic
programming-based decoding algorithm (see, e.g., Kulp et al.
1996).

Gene structure scoring function

The scoring function Gu(x, y) is a sum of contributions that arise
from four different kinds of features at any position j: (1) scores sS

j

of signal detectors S, (2) scores sC
½ i;i0 � of content detectors C, (3)

lengths j9 � j + 1 of segments types C, and (4) transitions between
consecutive states (S, S9):

Gu x;yð Þ = +
ð j;j9;S;S9;CÞ2y

t
sig;S
u sS

j

� �
+ tcont;C

u sC
½ j;j9�

� �

+ t len;S;S9
u j9� j + 1ð Þ + ttrans;S;S9

u

ð1Þ

Please note that the scores sS
j and sc

½ j;j0 � implicitly depend on x via
the layer 1 signal predictions. The relative importance of the in-
dividual features (i.e., of scores, lengths, and transitions) is ad-
justed by the transformations tu, each of which maps a given fea-
ture value to a corresponding score contribution. We will learn
these transformations by optimizing their parameterization u. For
the transitions, we have a special case: since tu

trans,S,S9 for given
states S, S9 does not depend on any additional parameter, the
transitions can be represented by a state-by-state transition table
ttrans. We model the three other transformations by piecewise lin-
ear functions (PLiFs) (Rätsch and Sonnenburg 2007; Rätsch et al.
2007), because they enable efficient training and at the same time
are sufficiently expressive to take the relationships between the
different features into account. For each PLiF, the supporting
points are preselected on the training set according to the range
and frequency of occurring feature values. The corresponding
function values are learned during global training. Together with
the transition table, they define the parameter vector u. For further
details, see Supplemental Section E.5.

Training

For a set of labeled training examples {(xn, yn)}, n = 1,. . ., N, the
parameters u are tuned such that each true labeling yn scores
higher than all other possible labeling y 2Yn by a large margin, i.e.,
Gu(x

n, yn) >> Gu(x
n, y). To find the optimal parameters u, the fol-

lowing optimization problem has to be solved (Tsochantaridis
et al. 2004):

min
j2RN ;u

+
N

n = 1

jn + P uð Þ ð2Þ

s:t: Gu xn; ynð Þ �Gu xn;yð Þ $ ‘ yn; yð Þ � jn

jn $ 0 8 n = 1; . . . ;N;y 2Yn;

where P is a suitable regularizer, the j’s are slack variables to im-
plement a soft margin (Cortes and Vapnik 1995; Schölkopf and
Smola 2002), and ‘(�,�) is a loss function measuring the difference
between label and prediction (details about regularizer and loss are
provided in Supplemental Sections E.6.1 and E.6.2).

While the number of constraints in (2) can be enormous, only
a small fraction of them is active. Hence, working set methods can
be applied in order to solve the problem (Tsochantaridis et al.
2005). The idea is to start with small sets of negative (i.e., false)
labelings Yk

n for every example n in iteration k. One obtains an
intermediate solution uk for the smaller problem and then identi-
fies labeling yk+1 2Yn that maximally violate the constraints, i.e.,
yk+1 = arg maxy2Yn

Guk xn;yð Þ + ‘ yn;y
� �

. The new constraint gener-
ated by the negative labeling is then added to the optimization
problem Yk+1

n = Yk
n [ yk+1
� �

. The method described above is also
known as the column generation method or cutting-plane algo-
rithm and can be shown to converge to the optimal solution
(Hettich and Kortanek 1993; Rätsch 2001; Tsochantaridis et al.
2005).

mGene.multi and mGene.seq: Incorporating additional
features

We extended the method described above by including two addi-
tional sources of information: genome conservation from multiple
genome alignments and prior knowledge in the form of EST or
protein alignments. The resulting methods produced predictions
submitted to nGASP category 2 and category 3, respectively.

With mGene.multi (dev) we implemented a first version that
exploits multiple genome alignments as additional features. For
each genomic position j, the corresponding column of the align-
ment was summarized as a discrete conservation score. This in-
formation was subsequently used in two different ways. First, we
improved the signal detectors by combining the DNA sequence
kernels with additional kernels that act on the corresponding
conservation scores in the same windows. Appropriate kernels
(linear and/or WD kernels) were chosen during model selection for
the individual signals. Second, we designed additional conserva-
tion detectors with spectrum kernels that act on the conservation
scores within a given segment. The types of conservation detectors
are analogous to the content detectors, including one for inter-
genic, intercistronic, UTR, coding exonic, intronic regions, as well
as for the three different reading frames (see Supplemental Sections
E.I and E.2 for further details). Together, the improved signal fea-
tures and the additional conservation features yielded a small
performance improvement relative to mGene.init.

For mGene.seq we used EST, cDNA, and protein sequences to
support our gene predictions. First, we aligned the sequences
against the genome (cf. Supplemental Section E.3). Then, we
modified the signal predictions prior to gene structure prediction,
i.e., we boosted or suppressed signal predictions that agreed or
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conflicted, respectively, with the alignments (more details are
given in the Supplemental Section E.3). Therefore, in contrast to
mGene.multi (dev), one does not need to retrain mGene; only the
prediction step has to be repeated.

Additional details on the experimental protocol used for the
nGASP competition, as well as the procedure for genome-wide
predictions on five nematodes can be found in the Supplemental
Sections E.7 and E.9

Availability and resources

We provide two versions of mGene: To enable others to reproduce
our results, the source code of the versions of mGene that have
been used in this work are available on our website. These versions
will be provided under an academic license and support will be
limited to reproducing the published results. Additionally, we
provide the source code of a mature version of mGene licensed
under GPL version 3. It uses a more general model (without trans-
splicing and operon predictions) and allows training and pre-
diction on eukaryotic genomes with command line tools. It will be
fully supported (see Supplemental Section D). The same version is
also available in the mGene.web webservice (Schweikert et al.
2009). Using this system, one may obtain a trained gene-finding
model within 24 h: For instance, training signal and content sensors
on the nGASP regions, as well as generating layer 1 predictions,
takes 2–5 h per individual sensor and can be performed in parallel;
the training of the integration step (layer 2) takes about 6 h (see
Schweikert et al. 2009 for more details). Using this webserver, we
have trained gene predictors for several other genomes including
D. melanogaster and A. thaliana (a complete list is available at
http://mgene.org/web/performance).

Prediction verification by RT-PCR and sequencing

To verify mGene’s predictions, we sampled from predicted spliced
genes that did not overlap with any gene from the WS180 anno-
tation. Additionally, we examined a group of spliced annotated,
but unconfirmed genes that did not overlap with any mGene
prediction (see Supplemental Section F for further details on the
target selection). For the selected genes, we designed primer pairs
in the first and last coding exon, such that each product spanned at
least one intron. Wild-type C. elegans mRNA was reverse tran-
scribed, followed by touchdown PCR. Amplification products were
analyzed by gel electrophoresis. All visible gel bands were eluted
and sequenced from both sides. The resulting sequences were
aligned to the genome using BLAT (Kent 2002) and the experiment
was counted as a success if the sequence could be unambiguously
mapped to the targeted gene (see Supplemental Section F for fur-
ther details).

Domain content annotation of new genes

We annotated the protein sequences of the novel C. elegans gene
predictions, which are not part of the current WormBase annota-
tions, with InterPro domain predictions. All domain predictions
are based on the InterPro collection of protein domain databases
(release 16.2) (Hunter et al. 2008). Protein domain predictions were
computed with the iprscan application (version 4.3.1) using de-
fault parameters (Zdobnov and Apweiler 2001).

Comparative analysis of the gene complement in five
nematodes

We initially computed all pairwise BLAST matches with a score
cutoff of $50 bits (BLO-SUM62 matrix). These pairwise similarity

relations served as input to Inparanoid (Remm et al. 2001), which
computed all pairwise orthologous clusters for every species pair. We
used the proteome of Escherichia coli as an outgroup in our Inpar-
anoid analysis (all sequenced Caenorhabditis species were raised on
E. coli cultures), thereby avoiding spurious grouping of potential
sequence contaminants. We activated the bootstrapping function
of Inparanoid to reject clusters of orthologs with weak support.
Subsequently, we used Multiparanoid (Alexeyenko et al. 2006) to
generate groups of orthologous genes for multiple species. All pro-
grams were run with default parameters if not stated otherwise.
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