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Abstract. Pathological tissue rating often involves manual cell count-
ing and percentaged staining estimation of cancerous cells. We present
in this paper a novel, free, and open-source software toolkit that con-
nects already available workflows for computational pathology and im-
munohistochemical tissue assessment with modern active learning algo-
rithms from machine learning and computer vision. This new connection
together with a user-friendly Java GUI enables comprehensive compu-
tational assistance in the pathological tissue rating. We introduce the
platform independent program and show on a test dataset of human re-
nal clear cell carcinoma and rabbit prostate carcinoma the validity of the
used algorithms.
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1 Introduction

Accurate immunohistochemical staining estimation of human tissue plays a cru-
cial role in various kinds of clinical applications and medical research. One exam-
ple is the estimation of MIB-1 for assessing the proliferation factor of renal clear
cell carcinoma or prostate cancer from a biopsy [1], where pathologists observe
morphological and immunohistochemical (IHC) characteristics of a given tissue.
IHC properties can be observed by staining thin tissue slices attached on a glass
plate with a protein specific antibody that is linked to a dye. Thus, cell nuclei
in the tissue layer that express this protein (“positive” for this protein) will ex-
hibit e.g. a dark brown color. Other cells (“negative”) will loose the antibody
in a subsequent washing procedure. Since the whole tissue slice is unspecifically
colored with hematoxylin, all negative cell nuclei show a light blue color.
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Fig. 1. Two parts of typical images on which cell nuclei are to be counted and staining
percentage is to be estimated. Blue spots are unstained nuclei, brown spots are stained
nuclei. Only cancer cells are relevant for counting.

In medical research, the IHC estimation is often done on tissue micro arrays
(TMA). The enormous advantage of TMAs is the fact that the tissue samples
from many patients of a study cohort are stained simultaneously on one micro
array, such that the experimental settings do not change between the different
patients. The scientific goal is then the screening for differences of protein ex-
pression patterns in different patient groups. Subsequently, such proteins might
serve as biomarkers for the respective patient groups.

Pathologists generally perform IHC estimation by eye with light microscopy
or high resolution scans (see Fig. 1). For a typical image, two relevant questions
for these types of problems are: (i) How many malignant or benign cells are
present in the image? (ii) How many nuclei of the cancer cells express the
protein under consideration?

These questions can be formulated as problems in medical image processing
and computer vision. Note, that there is a difference between malignant or be-
nign cells and stained or unstained cells. The staining of the nuclei only reveals
presence of protein or absence. The distinction of malignant and healthy cells
is considerably more difficult and relies on parameters like size, shape and mor-
phology of the cell nuclei but not necessarily on the IHC staining [2].

1.1 Motivation

High throughput THC staining estimation of tissue images poses several chal-
lenges in practice. By nature, IHC stained images are much more difficult to
analyze than e.g. immunofluorescence images (IF), where cell nuclei can be sep-
arated much more easily from the comparatively homogeneous background. Fur-
ther, in contrast to IF, the morphological structures of the tissue is much better
visible in THC images. In addition to disrupted stained cells, cell compartments
and the extracellular matrix, these structures might disturb the perception of a
nucleus. In the manual grading, this leads to highly subjective and biased cell
counts, even by trained human experts. Experiments have shown, that manual
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counting of cells is very subjective and not easily reproducible [3]. Further, the
manual assessment of TMAs is very time consuming, prone to error and expen-
sive. To this end, several approaches have been presented to assist or automate
the whole estimation process ([2], [4]). These approaches have shown promis-
ing results with respect to nuclei detection accuracy and their performances are
comparable to trained pathologists. However, while there exist a number of gen-
eral purpose medical imaging toolkits and commercial solutions, to the best of
our knowledge, no software package especially tailored to nuclei counting and
nuclear THC staining estimation of human tissue is available publicly and free of
charge for the research community.

1.2 Own Contribution

To provide medical researchers and clinical pathologists a software package to
alleviate the aforementioned tasks, we present TMARKER, a user-friendly, freely
available and platform independent toolkit to assist in cell nuclei counting and
staining estimation of ITHC stained tissue on whole tissue slides and TMAs (see
Fig. 2). The software aims to fit following needs:

e Semiautomatic, reproducible, and fast cell nuclei detection and counting in
a given set of IHC stained images,

e automatic classification of cells into malignant and benign (on the basis of
the frameworks presented in [2] and [4]),

e platform independence, free availability, user-friendly Java webstart GUI.

The program is implemented in Java v1.6 and can be executed on any

client with a Java virtual machine. It is publicly available at http://www.comp-
path.inf.ethz.ch.
In Section 2, we report algorithmic details, as well as implementation details. In
Section 3, we describe the results from several experiments, which demonstrate a
performance comparable to trained pathologists. Finally, we discuss the utility of
the software and the achieved results and give prospects to further developments
in Section 3.

2 Methods

2.1 Superpixels and Active Learning based Nucleus Detection and
Classification

Superpixels. In the scope of human tissue images, superpixels can be used
to segment cell nuclei as well as other structural compartments. For this pur-
pose, the size of superpixels should roughly cover a typical size of a nucleus.
TMARKER finds the correct size and number of superpixels by n = (wxh)/(4x
r?), where w and h are image width and height and 7 is the nucleus radius.
For superpixel formation, we use an adapted and natively in Java implemented
version of the simple linear iterative clustering (SLIC) superpixel algorithm as
introduced by [5].
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Fig. 2. Screenshot of TMARKER with a TMA image of MIB-1 stained renal clear cell
carcinoma. Detected cancerous and benign nuclei are marked with red cancerous and
green benign points.

Nucleus Detection. For the detection of cell nuclei, the whole tissue image is
partitioned into superpixels. The superpixels are then considered the samples for
training a classifier. From each superpixel, a feature vector based on the under-
lying image properties is calculated. We implemented three feature extractors,
which proved valuable for histology in the past: color histograms (3*16 bins),
local binary patterns (LBP) [6] (size 256), and pyramid histograms of oriented
gradients (PHOG) [7] (size 338). The features are concatenated resulting in a
featurevector of size 642. The default classifier in TMARKER is a random forest
[8] (WEKA package, [9]), although support for Support Vector Machines (SVM)
[10] and Bayesian Networks [11] is implemented. Based on the labels provided by
the pathologist, the classifier learns to discriminate between superpixels which
represent a nucleus (foreground) and superpixels belonging to the background.
The foreground superpixels are subjected to the nucleus classification.

Nucleus Classification. After the detection of the cell nuclei, the goal is to
classify them into malignant (cancerous) and benign (normal). To this end, we
are using the same feature vector as before, but the classifier is now trained
only on cell nuclei labeled by the domain expert. The superpixels corresponding
to detected nuclei from the step before are hence classified into malignant and
benign. These classification are visualized on the histological image so that the
pathologist is able to correct and retrain the classifier (see Fig. 3).

Active Learning. Active learning describes a learning method in which the
learner is able to chose the (most informative) training samples [12]. TMARKER
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Fig. 3. Superpixel algorithm. Left: Part of the original image. Middle: The image
is segmented in to superpixels. Right: Superpixels are classified into red and green
superpixels (positive and negative). As training set serve the labels of the user (red
and green circles). The color intensity reflects the classification probability.

provides a simple active learning algorithm which we call “Semiautomatic La-
beling”. The user starts labelling the image with positive (i.e. cancerous) and
negative (i.e. benign) nuclei. Optionally, the background of the image can also
be labeled in addition. With each label provided by the user, TMARKER re-
trains the classifier and updates the vizualisation of the classification results for
all superpixels. By iterating this process, the user improves the classification re-
sults by continually labeling the image. For the active learning, the user labels
superpixels with low classification confidence (high uncertainty) and thus im-
proving the discriminative classifier at the decision boundaries. The algorithm
can be trained over several images, to cover the larger variance among different
specimens. Once trained, the classifier can be applied to any new images in a
high-throughput manner.

Validation. Within the framework, it is important to distinguish between gold-
standard nuclei (GS), which were labeled and classified by the user, and esti-
mated nuclei (ES) identified by the system. To evaluate the performance of the
presented algorithms, we calculate the match statistics between GS and ES. Two
points with the distance d are matched to each other, if d < 2r, where r is the
nucleus radius. Based on this distance, precision, recall and F — Score are mea-
sured. Subsequently, the detected nuclei are classified into malignant and benign
and sensitivity, specifity and overall classification accuracy are calculated.

2.2 Color Deconvolution based Nucleus Detection

In cases when staining estimation is performed without nucleus classification
(i.e. the cells are homogeneous on the image), color deconvolution provides a
fast alternative to the superpixel approach. Color deconvolution enables nuclei
detection based on the method presented in [13]. The image is deconvolved into
separate color channels (e.g. hematoxylin channel and DAB channel), which
are smoothed with a Gaussian blur filter and subsequently screened for local
intensity maxima (see Fig. 4). These steps are performed with ImageJ for Java
[14]. A few parameters are needed for local maxima detection: The radius r of
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Fig. 4. Color Deconvolution: Left: The hematoxylin channel image. Middle: The DAB
channel image. Right: Found nuclei based on the intensities on the two channels and
the nucleus radius r.

cell nuclei describing the size of the local environment, and an intensity threshold
t per channel, above which a local maximum is accepted. Since these parameters
vary between experimental protocols for the preparation of tissue, TMARKER
provides visual assistance to select the parameter values. Interactively, the user
gets immediate feedback on changes to the parameters.

3 Results & Discussion

Superpixels and Active Learning. We present a new software toolkit called
TMARKER which is suitable for nucleus classification (malignant/benign vs.
stained /unstained). TMARKER uses a superpixel based approach for classifica-
tion. We show in Fig. 5 (left) that superpixels are suitable for image segmen-
tation and classification of histopathological images. The quantitative detection
accuracy (92%) and classification accuracy (64%) touches the range of the inter-
pathologists error (97%/74%) even at such a difficult problem. Thus, the detec-
tions and classifications of cell nuclei are comparable to these of pathologists.
Moreover, we show in Fig. 5 (right) that active learning approach profits from
user input especially on borderline cases. The classification accuracy saturates
already after 160 labels with systematic user input, instead of 360 user interac-
tions with randomly labeling.

Color Deconvolution. The nucleus detection and staining estimation with
color deconvolution provides facilitated parameter settings but no classical ma-
chine learning influence. If the pathology goal is not dependent on nucleus type,
or the nucleus types are known for the given image set, this method is a fast alter-
native to the more comprehensive classification. As shown in Fig. 6, TMARKER
achieves a reproducible precision and recall in nucleus detection. The perfor-
mance hereby is still comparable to two individual pathologists, as measured by
their inter-precision and inter-recall.

TMARKER is a free software with high potential in cell counting and stain-
ing estimation of pathological IHC stained tissue images. A major advantage of
TMARKER is the high reproducibility of competitive cell counts. A fast way for
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Fig. 5. Left: Performance plot for nucleus detection and classification via superpixels.
Depicted are precision, recall and F-score for the nucleus detection, as well as sensitivity,
specificity and accuracy for the nucleus classification. Experiments were conducted with
training set sizes from 5 % to 100 % (x-axis) of all nuclei in 8 completely labeled TMA
spots. Each box represents a Leave-One-Image-Out cross validation run with a SVM
and a polynomial kernel. The performance stabilizes with 15% of training samples. The
inter-expert performances of two pathologists is plotted last (“Pat”). Right: Proof
of concept for the active learning approach in TMARKER. For three given TMA
images, initially 20 nuclei (ten per class) were selected to train a SVM separating
malignant from benign nuclei. The classification result is shown as accuracy on the
y-axis. Consecutively, 20 additional nuclei were added repeatedly to the training (x-
axis), such improving the classification performance. The additional nuclei are chosen
at random (“acc_ran”) or systematically according to the respective lowest classification
score (“acc_sys”). The systematic approach saturates much faster. The classification
accuracy reaches the level of the two pathologists (“acc_pat”).
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staining estimation is provided by the integrated color deconvolution method.
When only relevant cells are considered for staining estimation, e.g. with distinc-
tion between malignant and benign cells, TMARKER provides modern machine
learning methods for nucleus detection and classification. While the potential
of TMARKER has been shown, it has to be further validated and improved on
larger and different datasets.
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