
December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software
Vol. 00, No. 00, January 2011, 1–26

Learning sparse classifiers with

Difference of Convex functions Algorithms

Cheng Soon Onga , Le Thi Hoai Anb∗

aDepartment of Computer Science, ETH Zurich, Switzerland;
bLaboratory of Theoretical and Applied Computer Science, University of Paul Verlaine -

Metz, Ile de Saulcy, 57045 Metz, France;
(Received 00 Month 200x; in final form 00 Month 200x)

Sparsity of a classifier is a desirable condition for high dimensional data and large sample sizes.
This paper investigates the two complementary notions of sparsity for binary classification:
sparsity in the number of features and sparsity in the number of examples. Several different
losses and regularizers are considered: the hinge loss and ramp loss, and `2, `1, approximate `0,
and capped `1 regularization. We propose three new objective functions that further promote
sparsity, the capped `1 regularization with hinge loss, and the ramp loss versions of approx-
imate `0 and capped `1 regularization. We derive difference of convex functions algorithms
(DCA) for solving these novel non-convex objective functions. The proposed algorithms are
shown to converge in a finite number of iterations to a local minimum. Using simulated data
and several datasets from the UCI machine learning repository, we empirically investigate the
fraction of features and examples required by the different classifiers.

Keywords: Sparse features and examples, binary classification, DCA.

AMS Subject Classification:

1. Introduction and background

We study the effect of different losses and regularization terms on binary classi-
fication. The task consists of discriminating between two classes of examples, by
convention called “positive” (+1) and “negative” (-1), based on some observed fea-
tures. The learning algorithm is given a training set consisting of n example-label
pairs (xi, yi), and the aim is to estimate the parameters w, b of the model such
that a certain objective function is minimized. In this paper, we consider linear
classifiers 〈w, x〉+ b with an objective function of the form

min
w,b

n∑
i=1

`(yi, xi;w, b) + λΩ(w), (1)

where ` is a loss function, λ is a regularization parameter, and Ω(·) is the reg-
ularizer (or penalty term). This general form of an objective function has been
traditionally used with convex loss functions and convex regularizers. For example,
the popular support vector machine (SVM) uses the hinge loss and the squared `2
norm regularizer (see Section 1.1). Further background can be found in [1, 2] and
references therein.

This paper was presented the International Conference on Optimization: Techniques and Applications
(ICOTA 8) in Shanghai, 10-13 December 2010.
∗Corresponding author. Email: lethi@univ-metz.fr

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 2011 Taylor & Francis
DOI: 10.1080/1055678xxxxxxxxxxxxx
http://www.informaworld.com

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

2 Cheng Soon Ong and Le Thi Hoai An

Table 1. Summary of algorithms considered. CapO-

neNormSVM, RLSVM0 and RLSVMC1 are new objective

functions proposed in this paper.

Hinge Loss Ramp Loss

`2 SVM [2] RLSVM2 [5]
`1 OneNormSVM [15] RLSVM1 [7]
`0 ZeroNormSVM [10] RLSVM0

(Section 2.4.1)
Capped `1 CapOneNormSVM RLSVMC1

(Section 2.4.2) (Section 2.4.3)

Recently, there has been renewed interest in non-convex losses. For example in
boosting, it has been shown that convex potential functions are not robust against
label noise [3] and a non-convex potential can mitigate this problem [4]. For support
vector machines (SVM), recent work has increased sparsity by using the truncated
loss [5, 6]. In [7], it is shown that the truncation results in Fisher consistency of
multiclass classifiers. In addition, the truncated hinge loss results in tighter learning
theoretic bounds [8, 9]. Parallel to this, there has been recent work on non-convex
regularizers to better approximate the `0 norm regularization [10–12].

However the resulting optimization problems are non-convex and in general dif-
ficult to solve. In this paper, we develop an unified approach based on difference of
convex (DC) programming and DC algorithms (DCA). DCA is a fast and scalable
approach for non-convex and non-smooth optimization [13, 14]. Generally, DCA
aims to solve a DC program that takes the form:

α = inf{F (z) := G(z)−H(z) : z ∈ Rm}, (Pdc)

where G,H are lower semicontinuous proper convex functions on Rm. Such func-
tions F are called DC functions, and G − H is called the DC decomposition of
F while G and H are DC components of F. Hence, for a DC program, each DC
decomposition corresponds to a different version of DCA. A DC function F has an
infinite number of DC decompositions which influence the quality of the resulting
algorithm, for example speed of convergence, robustness, efficiency and globality of
computed solutions. Therefore, the search for a “good” DC decomposition is im-
portant from algorithmic point of view, and is dependent on the specific structure
of the problem being considered.

We consider eight objective functions in this paper, which corresponds to: setting
the loss to the hinge loss and the ramp loss; and setting the regularizer to `2 and
`1 norms, and `0 and capped `1 functions. The objective functions are summarised
in Table 1, and are explained in detail in Section 2. The upper two objective
functions in the left column (SVM and OneNormSVM) are convex and the rest are
non-convex.

The contributions of this paper are as follows: We provide a unified analysis of
the non-convex objectives for binary classification via DCA. This results in a novel
efficient algorithm for CapOneNormSVM. We propose three new sparse objectives
(CapOneNormSVM, RLSVM0 and RLSVMC1), and derive efficient DCAs to solve
them. In a sense, we are filling an obvious gap in the class of problems of the form of
Equation (1). The three proposed DCA schemes have interesting convergence prop-
erties: the algorithms converge to a critical point after finitely many iterations, and
it is almost always case this point is a local minimizer to the considered problem.
The details of the algorithms and their convergence are discussed in Section 3.2.
Moreover, the algorithms consist of solving one linear program at each iteration.
We perform a careful empirical comparison of the different objectives (Section 4),
and show using simulated data and several datasets from the UCI database that

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 3

the proposed algorithms results in sparse and accurate classifiers. Finally some
discussions are reported in Section 5.

1.1. Related work

In recent years, there has been interest in the sparsity of the resulting classi-
fier [5, 15, 16]. There are two notions of sparsity, the so-called “primal” and “dual”
sparsity [17].

Dual sparsity refers to the effect that the final classifier is a combination of only
a small number of training examples. The support vector machine [2] is an example
of this effect. The support vector machine (SVM) minimizes the hinge loss on the
training examples, and uses the squared `2 norm as a regularizer.

min
w∈Rd,b∈R

n∑
i=1

max(0, 1− yi(〈w, xi〉+ b)) + λ‖w‖22.

One benefit of the `2 norm is that one can replace it with the reproducing kernel
Hilbert space norm, which allows us to prove the representer theorem. This is the
basis for the kernel trick, which generalizes the SVM to non-linear classification.
The representer theorem asserts that the resulting classifier is a convex combina-
tion of training points. The hinge loss promotes sparsity in the number of examples
used in the final classifier, the so-called support vectors. This is because the hinge
loss results in an `1 penalty on the Lagrange multipliers corresponding to the soft
constraint that the examples have to be on the correct side of the resulting hyper-
plane. Due to the effect of the hinge loss on the dual optimization problem, many of
the dual variables are zero at optimality, resulting in few support vectors [9]. SVM
has been shown to be consistent for universal kernels [18], but an improvement
is still expected since the ramp loss results in better learning rates [8]. There has
been recent work on further increasing the sparsity of the hinge loss by truncating
it at a certain level. This has been called the ramp loss or the truncated hinge
loss [5, 6]. In [7], it is shown that the truncation results in Fisher consistency of
multiclass classifiers. In addition, the truncated hinge loss results in tighter learn-
ing theoretic bounds [8, 9], since it is bounded while the hinge loss is unbounded.
One can also consider losses which do not result in sparsity with respect to the
number of examples, such as the logistic loss, but we do not consider such losses
here.

Primal sparsity refers to the effect that the resulting classifier only uses a few
of the features in the data. This has been studied for the regression case in the
statistics community [19], by considering different regularization (or penalty terms),
Ω(·). Ultimately, the most sparse representation is obtained by using the `0 norm
as a regularizer but the resulting optimization problem is combinatorial that is
known to be NP-hard. Hence researchers often perform a convex relaxation of the
regularizer, for example to the `1 norm [15, 20].

min
w∈Rd,b∈R

n∑
i=1

max(0, 1− yi(〈w, xi〉+ b)) + λ‖w‖1.

This `1 style penalty was popularized by the LASSO algorithm [16]. When even

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

4 Cheng Soon Ong and Le Thi Hoai An

more sparsity is desired, one can consider `p penalties for 0 < p < 1.

min
w,b

n∑
i=1

max(0, 1− yi(〈w, xi〉+ b)) + λ‖w‖pp.

When p = 0, this results in the `0 penalty that was recently investigated in [10].
We discuss this further in Section 2.2.

Motivated by the sparsity behaviour of the ramp loss, we investigate sparsity in
terms of both the examples and features. The theoretical [19] and experimental [21]
investigations on sparsity have concentrated on the regression case, whereas we
study the classification problem. In the paper by [17], they study the `1 norm with
hinge loss, albeit for the more complex setting of structured output learning. We
propose two new objective functions, corresponding to the ramp loss versions of the
capped `1 and `0 SVMs [10, 11]. We also investigate the newly proposed capped `1
regularizer [12], and present the corresponding SVM forms. In [11], an expensive
bilinear programming approach was used to solve the `2 regularization problem
with ramp loss. However, the paper also considers the capped `1 regularizer, albeit
not in the classification setting. The nonconvex objectives ZeroNormSVM [10],
RLSVM2 [5] and RLSVM1 [7] were also solved by DCA.

1.2. DCA in machine learning

In the current paper, motivated by the efficiency of DC programming and DCA
for large scale nonconvex problems, we develop these tools for solving the new
resulting optimization problems.

We note that the convex concave procedure (CCCP) for constructing discrete
time dynamical systems studied in [22] is nothing else than a special case of DCA.
Whereas the CCCP approach assumes differentiable objective functions, DCA han-
dles both smooth and nonsmooth nonconvex optimization. In the last five years
DCA has been successfully applied in several works in machine learning for SVMs-
based feature selection [5, 7, 10, 23], for improving boosting algorithms [24], for
implementing learning [25, 26], and for clustering [27, 28].

DCA has been successfully used for non-convex optimization models that com-
bined SVM-based Feature Selection and Classification [5, 7, 10, 23]. Also, the Suc-
cessive Linearization Algorithm (SLA) proposed in [29] for the feature selection
concave problem is a special case of the general DCA scheme.

2. Loss, regularizer, and new optimization models

We are given n training data points {xi, yi}ni=1, where xi ∈ Rd and yi ∈ {−1,+1}.
Recall that we consider linear classifiers with an objective function of the form in
Equation (1):

min
w,b

n∑
i=1

`(yi, xi;w, b) + λΩ(w),

where ` is a loss function and Ω(·) is the regularizer (or penalty term). We use
the hyperparameter λ in this paper to trade off between the various losses and
regularizers. In anticipation of solving the optimization problems using DCA, we
also present the corresponding DC decompositions in the following.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
t

0.0

0.5

1.0

1.5

2.0
` µ

(t
)

1.0

0.7

0.5

0.3

0.1

Figure 1. µ-ramp loss for different values of µ.

2.1. µ-ramp loss

(Figure 1 should be roughly here)
Instead of the truncated hinge loss as proposed in [5], we consider a slightly

different formulation. We propose a different parametrization called the µ-ramp
loss (shown for different values of µ in Figure 1), The µ-ramp loss always upper
bounds the 0-1 loss, and as µ −→ 0 tends to the 0-1 loss. For larger values of µ,
this is similar to the truncated hinge loss. The µ ramp loss is defined as

`µ(t) =

µ+ 1 if t < −µ2

1− t
µ if − µ2 6 t 6 µ

0 if t > µ

(2)

which can also be expressed as

`µ(t) =
1
µ

max(0, µ− t)− 1
µ

max(0,−µ2 − t) for µ ∈ [0, 1]. (3)

Reducing µ is a double edged sword. On one hand, we would expect it to increase
the sparsity of the resulting classifier, since we reduce the region with non-zero
gradient in the dual variables [5]. The ramp loss has also been shown to result in
tighter generalization bounds [6]. However, the ramp loss with small µ has a large
Lipschitz constant, which results in poor generalization error bounds [8]. For most
of the experiments in Section 4, we keep µ = 1, and hence are in a similar setting
to previous work. We further investigate the effect of reducing the value of µ in
Section 4.3.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

6 Cheng Soon Ong and Le Thi Hoai An

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
w

0.2

0.0

0.2

0.4

0.6

0.8

1.0

a
p
p
ro

x
 ||
w
|| 0

3.0

4.0

5.0

7.0

Figure 2. Approximation of the `0 regularizer, for various values of a.

2.2. Approximation of the `0 regularizer

(Figure 2 should be roughly here)
The `0 norm results in a combinatorial optimization problem, and hence is not

practical for large scale problems. We consider a smooth approximation to the `0
norm [10]. For τ ∈ R, let ra(τ) be the function defined for a given a > 0 by

ra(τ) = 1− exp(−a|τ |). (4)

The parameter a controls the “steepness” of the valley. A plot of the regularizer
for various values of a is given in Figure 2. This can be represented as a difference
of convex functions ra(τ) = ga(τ)− ha(τ), given by

ga(τ) = a|τ | and ha(τ) = a|τ | − 1 + exp(−a|τ |). (5)

2.3. The capped `1 regularizer

The capped `1 regularizer has been recently proposed [11] and shown to have useful
statistical properties [12]. For τ ∈ R, let δa(τ) be the function defined for a given
a > 0 by

δa(τ) = min(a, |τ |). (6)

The parameter a controls the maximum possible penalty that one pays for a large
weight. This can be represented as a difference of convex functions given by

δa(τ) = ga(τ)− ha(τ), where ga(τ) = |τ | and ha(τ) = max(0, |τ | − a). (7)

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 7

2.4. New optimization models

We propose three combinations of loss and regularizer presented above and derive
the resulting optimization problems. In particular: we combine µ-ramp loss with
the `0 penalty (RLSVM0), derive an efficient optimization method for hinge loss
with capped `1 penalty (CapOneNormSVM), and also propose combining the µ-
ramp loss with capped `1 penalty (RLSVMC1). For the sake of completeness, we
also present (in the appendix) the resulting optimization problems of other five
previously known cases indicated in Table 1 that we consider in the computational
experiments.

2.4.1. `0 regularizer approximate with µ-Ramp Loss

The first new formulation, called the `0 regularized ramp loss SVM (RLSVM0),
consists of combining the µ-ramp loss in (3) and the approximation to the `0 norm
in (4). The resulting optimization problem takes the form

min
w∈Rd,b∈R

F1(w, b) :=
n∑
i=1

`µ(yi(〈w, xi〉+ b)) + λ

d∑
j=1

ra(wj). (8)

2.4.2. Capped `1 regularizer with hinge loss

For the second formulation, called the capped `1 regularized hinge loss SVM
(CapOneNormSVM), we combine the hinge loss in standard SVM and the capped
`1 in (6). The resulting optimization problem is given by

min
w∈Rd,b∈R

F2(w, b) :=
n∑
i=1

max(0, 1− yi(〈w, xi〉+ b)) + λ

d∑
j=1

δa(wj). (9)

We propose an efficient optimization method in Section 3.

2.4.3. Capped `1 regularizer with µ-ramp loss

The combination of µ-ramp loss with capped `1 regularizer (RLSVMC1) gives
birth the third new optimization model which is described as

min
w∈Rd,b∈R

F3(w, b) :=
n∑
i=1

`µ(yi(〈w, xi〉+ b)) + λ
d∑
j=1

δa(wj). (10)

The three objectives proposed have the advantage that, while non-convex, they
can be expressed as a difference of two convex functions. Hence DCA can be applied
on these problems.

3. Solution methods by Difference of Convex functions Algorithm (DCA)

DC programming and DCA have been introduced by [30] and extensively devel-
oped by Le Thi Hoai An and Pham Dinh Tao since 1993 ([13, 14] and references
therein). They constitute the backbone of smooth/nonsmooth nonconvex program-
ming and global optimization. We express the three objective functions proposed
in Section 2.4 in the framework of DCA, and analyse their convergence properties
here.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

8 Cheng Soon Ong and Le Thi Hoai An

3.1. General DC programs

To give the reader some background on the theory of DC programming and DCA,
and our motivation to use them in the present work, we briefly outline these tools
at the beginning of this section. Let Γ0(Rm) denotes the convex cone of all lower
semi-continuous proper convex functions on Rm. The generic DCA addresses a DC
program which takes the form

α = inf{F (z) := G(z)−H(z) : z ∈ Rm} (Pdc)

where G,H ∈ Γ0(Rm). Note that if (Pdc) admits a solution, that is α is finite, then
one can replace “inf” by “min”. Convex constraints on z can be expressed in the
form above by using the indicator set of the constraints. Let C be a nonempty
closed convex set. Then, the problem

inf{F (z) := G(z)−H(z) : z ∈ C}

can be transformed into an unconstrained DC program by using the indicator
function of C denoted by χC , that is

inf{F (z) := φ(z)−H(z) : z ∈ Rm},

where φ := G+ χC is in Γ0(Rm).
Non smooth functions are handled (as in convex analysis) using the concept of

subdifferentials. Recall that, for θ ∈ Γ0(Rm) and z0 ∈ dom θ := {z ∈ Rm|θ(z0) <
+∞}, the subdifferential of θ at z0, denoted ∂θ(z0), is defined as

∂θ(z0) := {y ∈ Rm : θ(z) ≥ θ(z0) + 〈z − z0, y〉 ,∀z ∈ Rm}

which is a closed convex set in Rm. It generalizes the derivative in the sense that θ
is differentiable at z0 if and only if ∂θ(z0) is reduced to a singleton which is exactly
{∇θ(z0)}.

The necessary local optimality condition for (Pdc) is

∂H(z∗) ⊂ ∂G(z∗). (11)

The condition (11) is also sufficient for many important classes of DC programs,
for example, for DC polyhedral programs, or when function F is locally convex
at z∗ [14]. A DC program (Pdc) is called a DC polyhedral program when either
G or H is a polyhedral convex function (i.e., the pointwise supremum of a finite
collection of affine functions). Note that a polyhedral convex function is almost
everywhere differentiable, that is it is differentiable everywhere except on a set of
measure zero.

A point that z∗ verifies the generalized Kuhn-Tucker condition

∂H(z∗) ∩ ∂G(z∗) 6= ∅ (12)

is called a critical point of G −H. It follows that if H is polyhedral convex, then
a critical point of G−H is almost always a local solution to (Pdc) [14].

It is worth noting the richness of the set of DC functions on Rm: they contain
many objective functions and are closed under the operations usually considered
in optimization [13].

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 9

3.2. Difference of Convex functions Algorithms (DCA)

The main idea behind DCA is to replace, at the current point zk of iteration k,
the concave part −H(z) with its affine majorization defined by

Hk(z) := H(zk) +
〈
z − zk, γk

〉
, γk ∈ ∂H(zk)

to obtain the convex program of the form

inf{G(z)−Hk(z) : z ∈ Rm} ⇐⇒ inf{G(z)−
〈
z, γk

〉
: z ∈ Rm}. (Pk)

In fact, DCA is an iterative primal-dual subgradient method, but for simplicity
we omit here the DC duality and the dual part of DCA. The generic DCA scheme
is shown below. Note that the DCA is constructed from DC components G and H
and their conjugates but not from the DC function F itself. Furthermore, DCA is
a descent method without line-search which has linear convergence for general DC
programs.

Algorithm 1 Generic difference of convex functions algorithm (DCA)
Initialization: Let z0 ∈ Rm be an initial guess.
k = 0
repeat
γk ∈ ∂H(zk).
zk+1 ∈ argmin{G(z)−

〈
z, γk

〉
: z ∈ Rm}.

k = k + 1
until convergence

DCA schemes have the following properties [14]:

i) the sequence {G(zk)−H(zk)} is decreasing,
ii) if the optimal value α of problem (Pdc) is finite and the infinite sequences {zk} is

bounded, then every limit point z̃ of the sequence {zk} is a critical point of G−H.
In particular, if H is polyhedral function and H is differentiable at x∗, then x∗

is a local minimizer of (Pdc).
iii) If (Pdc) is a polyhedral DC program, then the sequence {zk} converges after a

finite number of iterations.

Observe that a DC function has infinitely many DC decompositions and there are
as many DCA as there are DC decompositions which have crucial impacts on the
qualities (speed of convergence, robustness, efficiency, and globality of computed
solutions) of DCA. Hence, the solution of a nonconvex program by DCA must be
composed of two stages: the search of an appropriate DC decomposition and that
of a good initial point. In the following subsections, we provide the details of the
corresponding decompositions and initialization points for the objective functions
in Section 2.4.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

10 Cheng Soon Ong and Le Thi Hoai An

3.3. DCA for solving RLSVM0

Consider now the optimization problem (8), where `µ is the µ-ramp loss and ra is
the approximate `0 regularizer.

min
w∈Rd,b∈R

F1(w, b) :=
n∑
i=1

`µ(yi(〈w, xi〉+ b)) + λ
d∑
j=1

ra(wj).

A natural DC decomposition of F1 can be derived from (3) and (5) as follows:

F1(w, b) = G(w, b)−H(w, b) (13)

where

G(w, b) =
1
µ

n∑
i=1

max(0, µ− yi(〈w, xi〉+ b)) + λa‖w‖1, (14)

and

H(w, b) =
1
µ

n∑
i=1

max(0,−µ2−yi(〈w, xi〉+b))+λ
d∑
j=1

a|wj |−1+exp(−a|wj |). (15)

The problem (8) can be now written in the form of DC program:

min
w∈Rd,b∈R

G(w, b)−H(w, b). (16)

Observe that G(w, b) is the same as a margin rescaled SVM with `1 regularization.
Moreover, it is worth noting that G is a convex polyhedral function, consequently
(16) is a DC polyhedral program. Therefore, as will be seen later, DCA applied to
(16) converges finitely, and it requires solving one linear program at each iteration.
For designing DCA applied to (16), firstly, we have to compute a subgradient of
the function H. Consider the first term of H in Equation (15),

H1(w, b) :=
1
µ

n∑
i=1

h1
i (w, b), with h1

i (w, b) := max(0,−µ2 − yi(〈w, xi〉+ b)).

We have

∂h1
i (w, b) = ∂wh

1
i (w, b)× ∂bh1

i (w, b)

where [31]:

Rd ⊃ ∂h1
i (w, b)
∂w

=

{−yixi} for yi(〈w, xi〉+ b) < −µ2

{0} ∈ Rd for yi(〈w, xi〉+ b) > −µ2

co {0,−yixi} for yi(〈w, xi〉+ b) = −µ2

(17)

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 11

and

R ⊃ ∂h1
i (w, b)
∂b

=

{−yi} for yi(〈w, xi〉+ b) < −µ2

0 for yi(〈w, xi〉+ b) > −µ2

co {0,−yi} for yi(〈w, xi〉+ b) = −µ2.

(18)

Here “co” stands for the convex hull.
Observe that h1

i (w, b) is differentiable everywhere, except for yi(〈w, xi〉 + b) =
−µ2. Since the DCA only needs an element from the subdifferential, we choose
(arbitrarily) that

0 ∈ Rd+1 as a subgradient of ∂h1
i (w, b) if yi(〈w, xi〉+ b) = −µ2. (19)

Finally, the subgradient of H1(w, b) corresponding to this choice is written as

γ ∈ ∂H1(w, b)⇐= γ =
1
µ

n∑
i=1

(swi, sbi) , with swi ∈
∂h1

i (w, b)
∂w

, sbi ∈
∂h1

i (w, b)
∂b

(20)
being defined by (17), (18) and (19).

Consider now the second term of H in Equation (15),

H2(w, b) := λ

n∑
i=1

d∑
j=1

a|wj | − 1 + exp(−a|wj |).

It has been shown in [10] that H2(w, b) is differentiable everywhere and
∇H2(w, b) = (λv, 0) with

vj =

{
a(1− exp(−awj)) if wj ≥ 0
−a(1− exp(awj)) if wj < 0

, j = 1, . . . , d. (21)

Finally, a subgradient (η, κ) of the function H (which is in fact differentiable ev-
erywhere except for some that points verifying yi(〈w, xi〉+ b) = −µ2) is computed
as

Rd × R ⊃ ∂H(w, b) 3 (η, κ) =
1
µ

n∑
i=1

(swi, sbi) + (λv, 0) (22)

with swi, sbi being defined by (17), (18) and (19) and v = (vj) being given in (21).
According to the generic DCA scheme, at each iteration k, we have to com-

pute (ηk, κk) ∈ ∂H(wk, bk) and then solve the convex program of the form (Pk)
(Section 3.1),

min
{
G(w, b)−

〈
(ηk, κk), (w, b)

〉
: (w, b) ∈ Rd+1

}
. (23)

Since G(w, b) = 1
µ

∑n
i=1 max(0, µ−yi(〈w, xi〉+ b))+λa‖w‖1 is a polyhedral convex

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

12 Cheng Soon Ong and Le Thi Hoai An

function, the problem(23) is equivalent to the following linear program:

min
w,b,ξ,ς

1
µ

n∑
i=1

ξi + λa
d∑
j=1

ςj −
〈
ηk, w

〉
− κkb

subject to ξi > µ− yi(〈w, xi〉+ b)
−ςj 6 wj 6 ςj , for j = 1, . . . , d
ξi, ςj > 0, for i = 1, . . . , n, j = 1, . . . , d.

(24)

As mentioned earlier, a good initialization point is important for finding a good
solution. In the setting of this paper, it is natural to use the linear program corre-
sponding to the convex part of the DC function. This is fortuitously the convex pro-
gram OneNormSVM (Appendix A.2), hence implying that the solution obtained
by the proposed DCA is at least as good as that obtained by this well studied
method [15]. The DCA for solving RLSVM0 is shown in Algorithm 2.

Algorithm 2 RLSVM0
Initialization: Set k = 0 and initialize w0, b0 with a standard 1-norm SVM solu-

tion.
Set hyperparameter λ and c.
repeat

Compute (ηk, κk) ∈ ∂H(wk, bk).
Solve the linear program (24) to obtain wk+1, bk+1,

until F1(wk+1, bk+1) = F1(wk, bk) (Equation 13)

3.4. DCA for solving CapOneNormSVM

We consider the capped `1 regularizer (9) proposed in [11] with the hinge loss, and
derive a DCA to solve it. Note that in [11], the capped `1 regularizer was not used
for classification, but a similar problem was solved using bilinear programming. The
DC decomposition of δa(τ) given in (7) implies the following DC decomposition:

F2(w, b) = Φ(w, b)−Ψ(w, b) (25)

where

Φ(w, b) =
n∑
i=1

max(0, 1−yi(〈w, xi〉+b))+λ‖w‖1, Ψ(w, b) = λ
d∑
j=1

max(0, |wj |−a).

This is a polyhedral DC program where both Φ and Ψ are convex polyhedral
functions. Similar to the computation of subgradient of H we have

∂Ψ(w, b) 3 (λv, 0) (26)

where

vj =

{
sign(wj) for |wj | > a
0 for |wj | < a

, j = 1, . . . , d. (27)

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 13

Let (λvk, 0) ∈ ∂Ψ(wk, bk). Like (23), the convex program

min
{

Φ(w, b)−
〈

(λvk, 0), (w, b)
〉

: (w, b) ∈ Rd+1
}

is equivalent to the following linear program:

min
w,b,ξ,ς

n∑
i=1

ξi + λ
d∑
j=1

ςj − λ
〈
vk, w

〉
subject to ξi > 1− yi(〈w, xi〉+ b)

−ςj 6 wj 6 ςj , for j = 1, . . . , d
ξi, ςj > 0, for i = 1, . . . , n, j = 1, . . . , d.

. (28)

Hence the DCA applied to (9) is described in Algorithm 3.

Algorithm 3 CapOneNormSVM
Initialization: Set k = 0 and initialize w0, b0 with a standard 1-norm SVM solu-

tion.
Set hyperparameter λ and a.
repeat

Compute vk via (27).
Solve the linear program (28) to obtain wk+1, bk+1,

until F2(wk+1, bk+1) = F2(wk, bk) (Equation 25)

3.5. DCA for solving RLSVMC1

Using the same technique as in the previous two DC formulations, using (3) and
(7) we obtain the next DC formulation of the problem (10):

min
w∈Rd,b∈R

F3(w, b) := Ξ(w, b)−Υ(w, b) (29)

where

Ξ(w, b) =
1
µ

n∑
i=1

max(0, µ−yi(〈w, xi〉+ b))+λ‖w‖1, Υ(w, b) = H1(w, b)+Ψ(w, b).

Hence (29) is a polyhedral DC program where both Ξ and Υ are convex polyhedral
functions. Using (20) and (26) we can determine a subgradient of Υ(w, b) as follows

∂Υ(w, b) 3 (ϑ, σ) :=

((
1
µ

n∑
i=1

swi

)
+ λv,

1
µ

n∑
i=1

sbi

)
(30)

where swi ∈ ∂h1
i (w,b)
∂w , sbi ∈ ∂h1

i (w,b)
∂b are defined in (17), (18) and (19), and v is

computed by (27). Let (ϑk, σk) ∈ ∂Υ(wk, bk). Similar to (23), the convex program

min
{

Ξ(w, b)−
〈

(ϑk, σk), (w, b)
〉

: (w, b) ∈ Rd+1
}

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

14 Cheng Soon Ong and Le Thi Hoai An

is equivalent to the following linear program:

min
w,b,ξ,ς

1
µ

n∑
i=1

ξi + λ
d∑
j=1

ςj −
〈
ϑk, w

〉
− σkb

subject to ξi > µ− yi(〈w, xi〉+ b)
−ςj 6 wj 6 ςj , for j = 1, . . . , d
ξi, ςj > 0, for i = 1, . . . , n, j = 1, . . . , d.

. (31)

Algorithm 4 RLSVMC1
Initialization: Set k = 0 and initialize w0, b0 with a standard 1-norm SVM solu-

tion.
Set hyperparameter λ and c.
repeat

Compute (ϑk, σk) ∈ ∂Υ(wk, bk) via (30)
Solve the linear program (31) to obtain wk+1, bk+1,

until F3(wk+1, bk+1) = F3(wk, bk) (Equation 29)

3.6. Convergence

The three DCA schemes developed above enjoy interesting convergence properties.
For notational convenience, we denote by F the objective function of the resulting
optimization problems, that is F ∈ {F1, F2, F3}.

Theorem 3.1 Convergence properties of proposed algorithms
For Algorithms 2, 3 and 4, we have the following:

(I) DCA generates the sequence {(wk, bk)} such that the corresponding sequence
{F (wk, bk)} is monotonously decreasing.

(II) The sequence {(wk, bk)} converges to (w∗, b∗) after a finite number of itera-
tions.

(III) The point (w∗, b∗) is a critical point of F .
(IV) The point (w∗, b∗) is almost always a local minimizer of the corresponding

optimization problem (8), (9) or (10). More precisely
(a) In CapOneNormSVM, if

w∗j 6= a ∀j = 1, . . . , d (32)

then (w∗, b∗) is a local minimizer of (9).
(b) In RLSVMC1, if

w∗j 6= a ∀j = 1, . . . , d and yi(〈w, xi〉+ b) 6= µ2 ∀i = 1, . . . , n (33)

then (w∗, b∗) is a local minimizer of (10).

Proof (I) and (III) are direct consequences of the convergence properties of general
DC programs while (II) is a convergence property of a DC polyhedral program.
Moreover, observing that the second DC component of (9) and (10), say Ψ and Υ
are convex polyhedral functions, and if the condition (32) (resp. (33)) holds, then
Ψ (resp. Υ) is differentiable at (w∗, b∗), and using the DCA’s convergence property
ii) mentioned in Section 3.2 we deduce (IV.a) and (IV.b). Since a polyhedral convex

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 15

function is almost always differentiable, say, it is differentiable everywhere except on
a set of measure zero, we can say that (w∗, b∗) is almost always a local minimizer
of (9) and/or (10). Likewise, by considering the dual problem of (8) in which
the second DC component is convex polyhedral, we can prove that RLSVM0
converges almost always to a local minimizer of (8). �

In fact, for the ramp loss, detecting convergence can simply be done by checking
whether any new points fall into the margin region. Since the considered problem
is non-convex, we may end up in a local optimum. Knowing that DCA with a good
starting point can provide a global minimizer, we initialize our methods with the
solution of a “close” convex problem, which is `1 regularized SVM.

4. Computational experiments

We implemented the above optimization problems using Python1 and CVXOPT2.
The optimization code and the software for reproducing the experiment is available
at http://www.inf.ethz.ch/personal/cong/optwok.html

We used the following experimental settings for all our experiments. We used
a 70%/30% training-test set split, and the results shown are mean and standard
deviation of 20 random repetitions. To select the regularization parameter λ, we
used five fold cross validation to choose from the set λ={0.1, 0.2, 0.3, 0.5, 1.0, 2.0,
3.0, 5.0, 10.0}. The parameters a and µ were fixed for all experiments to a = 4 for
the `0 regularizer, and a = 1 for the capped `1 regularizer, and µ = 1 (except in
Section 4.3). The DCA iterations are stopped when the total change in parameters
are less than ε = 10−3. Note that apart from Equation (4), all the other DCA have
discrete changes, and hence the stopping criteria is effectively exact (Section 3.6).

To compute the fraction of features used, we used the threshold 10−6 on the
weight vector w, and divided the number of “non-zero” weights with the number
of dimensions. Following [5], we detect the number of support vectors by applying
the classifier on the training data and counted the number of examples in the sloped
region of the loss, again using a small threshold. For the hinge loss, this includes
all points with the signed output less than 1 + 10−2, and for the ramp loss this
includes all points in the interval [−µ2 − 10−2, µ+ 10−2].

We compare our new proposed DCAs (Section 3.2) with the three DCA schemes
developed recently in [5], [7] and [10], and also consider the two standard convex
objective functions (refer to Table 1, Section 2.4 and the appendix). We are inter-
ested in the efficiency of different DCA schemes for this class of problems dealing
with sparsity of the resulting classifier. Recall that we are considering two types of
sparsity: the number of support vectors and the number of features with non-zero
weight.

4.1. Simulated data

We generated some data from two 10 dimensional Gaussian distributions with
variance 1.5, centered around the unit positive and negative vectors. In addition,
we generated noise by sampling uniformly in the other dimensions. We investigated
[0, 10, 100, 200] noise dimensions. For normalization, we scaled the resulting dataset
by 0.2. The following results are based on 20 random permutations of the data,

1http://www.python.org
2http://abel.ee.ucla.edu/cvxopt/

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

16 Cheng Soon Ong and Le Thi Hoai An

0 10 100 200
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
fe

a
tu

re
s

u
se

d

OneNormSVM

0 10 100 200
0.0

0.2

0.4

0.6

0.8

1.0

ZeroNormSVM

0 10 100 200
0.0

0.2

0.4

0.6

0.8

1.0

CapOneNormSVM

0 10 100 200
number of noisy features

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
fe

a
tu

re
s

u
se

d

RLSVM1

0 10 100 200
number of noisy features

0.0

0.2

0.4

0.6

0.8

1.0

RLSVM0

0 10 100 200
number of noisy features

0.0

0.2

0.4

0.6

0.8

1.0

RLSVMC1

Figure 3. The fraction of features used when increasing noise dimensions. The `2 regularized classifiers
always use all features, and are not shown. The fraction of true features are [1.0, 0.5, 0.1, 0.05] respectively.
The classifiers with `0 and capped `1 regularization use fewer features.

0 10 100 200
0

5

10

15

20

fa
ls

e
 p

o
si

ti
v
e
 f

e
a
tu

re
s

OneNormSVM

0 10 100 200
0

5

10

15

20
ZeroNormSVM

0 10 100 200
0

5

10

15

20
CapOneNormSVM

0 10 100 200
number of noisy features

0

5

10

15

20

fa
ls

e
 p

o
si

ti
v
e
 f

e
a
tu

re
s

RLSVM1

0 10 100 200
number of noisy features

0

5

10

15

20
RLSVM0

0 10 100 200
number of noisy features

0

5

10

15

20
RLSVMC1

Figure 4. The fraction of false positive features used when increasing noise dimensions. The `2 regularized
classifiers always use all features, and are not shown. `1 regularized classifiers discover an increasing number
of “noise” features, whereas the other two regularizers do not.

where in each permutation 70 examples were used in training and the remaining
30 were used for testing.

4.1.1. Feature selection

(Figures 3, 4, 5 and 6 should be roughly here)
In this section, we investigate the ability of the algorithms in finding the di-

mensions corresponding to the Gaussian distributions (the “true” features). We
consider elements wj > 10−6 of the weight vector to be nonzero, and deem the
corresponding feature to be selected. Since we generated the data, we can compare
the discovered features with the ground truth.

Recall that the `2 regularized classifiers always use all features, hence we inves-
tigate the remaining classifiers. As can be seen in Figure 3, the resulting classifiers
are sparse in the number of selected features in the presence of noise dimensions.
Note also that the number of chosen features is close to the right fraction of true
features. Features which are given zero weight are called false negative features,

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 17

0 10 100 200
0

2

4

6

8

10

fa
ls

e
 n

e
g
a
ti

v
e
 f

e
a
tu

re
s

OneNormSVM

0 10 100 200
0

2

4

6

8

10
ZeroNormSVM

0 10 100 200
0

2

4

6

8

10
CapOneNormSVM

0 10 100 200
number of noisy features

0

2

4

6

8

10

fa
ls

e
 n

e
g
a
ti

v
e
 f

e
a
tu

re
s

RLSVM1

0 10 100 200
number of noisy features

0

2

4

6

8

10
RLSVM0

0 10 100 200
number of noisy features

0

2

4

6

8

10
RLSVMC1

Figure 5. The fraction of false negative features used when increasing noise dimensions. The `2 regularized
classifiers always use all features, and are not shown. The classifiers with `0 and capped `1 regularization
ignore a portion of the “informative” features, however with little loss of accuracy (see Figure 6).

0 10 100 200
0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

SVMPrimal

0 10 100 200
0.5

0.6

0.7

0.8

0.9

1.0
OneNormSVM

0 10 100 200
0.5

0.6

0.7

0.8

0.9

1.0
ZeroNormSVM

0 10 100 200
0.5

0.6

0.7

0.8

0.9

1.0
CapOneNormSVM

0 10 100 200
number of noisy features

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

RLSVM2

0 10 100 200
number of noisy features

0.5

0.6

0.7

0.8

0.9

1.0
RLSVM1

0 10 100 200
number of noisy features

0.5

0.6

0.7

0.8

0.9

1.0
RLSVM0

0 10 100 200
number of noisy features

0.5

0.6

0.7

0.8

0.9

1.0
RLSVMC1

Figure 6. The accuracy with respect to increasing noise dimensions. The top row shows the performance of
classifiers with hinge loss, and the bottom classifiers with ramp loss. The classifiers with sparsity inducing
regularizers suffer a small decrease in accuracy compared to the `2 regularized classifier.

and “noise” features which are given non-zero weight are called false positive fea-
tures. Figure 4, and Figure 5 show that the `0 norm and the capped `1 norm are
better at filtering out false features, but at the cost of missing some true features.
It is known from the feature selection literature that not all informative features
are needed to achieve good accuracy. It may be that some features are redundant
(although informative) given the other available features [32]. From Figure 6, we
see that when comparing classifiers with the same loss function, the sparsity does
not significantly reduce the accuracy of the classifier.

4.1.2. Robustness against label noise

(Figure 7 should be roughly here)
One benefit of the ramp loss is that it “gives up” on examples which are too

far on the wrong side of the hyperplane, for example when a particular example is
falsely labeled. In this section, we show that the increase in the number of support
vectors is reduced.

To test the intuition that the ramp loss is effective against random classifica-
tion noise, we generated data as above (with no noise dimensions), and randomly
changed the label for certain examples in the data set. We tested the fractions
[0.0, 0.1, 0.2, 0.3], that is we randomly flipped the labels of 0, 10, 20 and 30 of the

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

18 Cheng Soon Ong and Le Thi Hoai An

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
su

p
p
o
rt

 v
e
ct

o
rs

SVMPrimal

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0
OneNormSVM

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0
ZeroNormSVM

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0
CapOneNormSVM

0.0 0.1 0.2 0.3
Proportion of noisy labels

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
su

p
p
o
rt

 v
e
ct

o
rs

RLSVM2

0.0 0.1 0.2 0.3
Proportion of noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM1

0.0 0.1 0.2 0.3
Proportion of noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM0

0.0 0.1 0.2 0.3
Proportion of noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVMC1

Figure 7. The fraction of support vectors when increasing random classification noise. The classifiers with
ramp loss has a smaller increase in the number of support vectors as the random classification noise is
increased.

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
p
a
ra

m
e
te

rs

SVMPrimal

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
OneNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
ZeroNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
CapOneNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
p
a
ra

m
e
te

rs

RLSVM2

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM1

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM0

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVMC1

Figure 8. The fraction of parameters (support vectors and features) when increasing both the noise dimen-
sions and random classification noise. RLSVM0 and RLSVMC1 use fewer parameters due to simultaneous
sparsity in features and examples.

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

SVMPrimal

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
OneNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
ZeroNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
0.0

0.2

0.4

0.6

0.8

1.0
CapOneNormSVM

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

RLSVM2

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM1

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVM0

0;0.0 10;0.1 100;0.2 200;0.3
noisy features ; noisy labels

0.0

0.2

0.4

0.6

0.8

1.0
RLSVMC1

Figure 9. The accuracy with respect to increasing noise dimensions and label noise. The top row shows
the performance of classifiers with hinge loss, and the bottom classifiers with ramp loss. Each element on
the x-axis is a dataset labeled by two arguments (number of noisy features; fraction of noisy labels). Recall
that the expected accuracy (due to random classification noise) is [1.0, 0.9, 0.8, 0.7] respectively. There is
little decrease in performance in the sparsity inducing classifiers (refer to Figure 8).

100 examples.
The effect of increasing the number of falsely labeled examples in training on the

number of support vectors are shown in Figure 7. Observe that the classifiers with
ramp loss has a smaller increase in the number of support vectors as the random
classification noise is increased.

(Figure 8 and 9 should be roughly here)
The total effect of simultaneously varying both the number of noise dimensions

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 19

pima bupa ionos wpbc sonar0.0

0.2

0.4

0.6

0.8

1.0
Fr

a
ct

io
n
 o

f
p
a
ra

m
e
te

rs
SVMPrimal

OneNormSVM

ZeroNormSVM

CapOneNormSVM

RLSVM2

RLSVM1

RLSVM0

RLSVMC1

Figure 10. Effect of the algorithm used on the total fraction of parameters.

and the rate of random classification noise is shown in Figure 8. Here the fraction
of parameters is given by

number of features × number of support vectors
number of dimensions × number of examples

.

Observe that the sparsity pattern translates to a big savings in the total number
of parameters, without a significant loss of accuracy (Figure 9).

4.2. Sparsity in UCI data

(Figure 10 should be about here.)
Using several UCI datasets, we investigated the fraction of features used and

the fraction of support vectors for the six classifiers. All the classifiers had com-
parable accuracies. As an indication, the performance of the ramp loss SVM with
`2 regularization is shown in Table 2. Observe that the ramp loss classifiers use
consistently less support vectors than their corresponding hinge loss counterparts,
as expected. Also, except for the bupa data, the number of features used decreases
as we go from `2 to `1 to `0 norm regularization. This is also in line with the intu-
ition that the lower norms should be sparser. The total number of parameters used
for various algorithms, as shown in Figure 10, shows two groups of data. The first
group which includes pima and bupa, sees a continual decrease in the total fraction
of parameters. We conjecture that this is due to random classification noise in the
datasets, from which the ramp loss is less susceptible. In the second group which
includes ionosphere, wpbc and sonar, the savings in the total number of parameters
using the ramp loss is smaller.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

20 Cheng Soon Ong and Le Thi Hoai An

µ=1.0 µ chosen by cross validation
Data accuracy frac sv accuracy frac sv µ

wpbc 0.79 ± 0.05 0.33 ± 0.05 0.78 ± 0.05 0.24 ± 0.06 0.61 ± 0.27
pima 0.76 ± 0.02 0.22 ± 0.11 0.76 ± 0.03 0.10 ± 0.10 0.49 ± 0.29
ionosphere 0.86 ± 0.03 0.22 ± 0.05 0.86 ± 0.03 0.17 ± 0.05 0.60 ± 0.29
sonar 0.74 ± 0.04 0.45 ± 0.06 0.75 ± 0.05 0.38 ± 0.09 0.68 ± 0.35
bupa 0.69 ± 0.05 0.41 ± 0.11 0.68 ± 0.03 0.21 ± 0.11 0.57 ± 0.27

Table 2. Reducing the number of support vectors does not

affect accuracy. The results on the left are computed with

µ = 1.0 whereas the results on the right are obtained us-

ing cross validation. The chosen value of µ for each dataset

is shown in the rightmost column. Note that for each dataset

the classifiers have similar accuracies, but the number of sup-

port vectors decrease.

0.1 0.5 0.9
0.0

0.1

0.2

0.3

0.4

0.5

Fr
a
ct

io
n
 o

f
su

p
p
o
rt

 v
e
ct

o
rs pima

0.1 0.5 0.9

bupa

0.1 0.5 0.9

ionosphere

0.1 0.5 0.9

wpbc

0.1 0.5 0.9

sonar

Figure 11. The effect of µ on the number of support vectors. The classifiers have similar accuracies.

1 2 3 4 5 6
2
4
6
8

10
12
14
16

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

pima

1 2 3 4 5 6
2
4
6
8

10
12
14
16

bupa

1 2 3 4 5 6
2
4
6
8

10
12
14
16

ionosphere

1 2 3 4 5 6
2
4
6
8

10
12
14
16

wpbc

1 2 3 4 5 6
2
4
6
8

10
12
14
16

sonar

Figure 12. Number of iterations till convergence. The algorithms (1-6) are 1:ZeroNormSVM, 2:CapO-
neNormSVM, 3:RLSVM2, 4:RLSVM1, 5:RLSVM0, 6:RLSVMC1.

4.3. Approximating 0-1 loss

(Figure 11 should be about here.)
In this section, we investigate the effect of the parameter µ. Using 5 fold cross

validation, we search in for the best µ from the set {0.1, 0.2, . . . , 1.0}. Recall that
changing the value of µ affects the margin region, and as µ −→ 0 the ramp loss tends
to the 0-1 loss. As expected and shown in Figure 11, the number of support vectors
decrease as µ decreases. Surprisingly, all the classifiers had comparable accuracies
for the range µ={0.1, 0.2, . . . , 1.0}. From Table 2, we see that by performing cross
validation to find the optimal value of µ, we attain similar levels of accuracy with
fewer support vectors.

4.4. Computational effort

(Figure 12, 13, 14 should be about here)
All the DC methods converge within 16 iterations, as shown in Figure 12. For

ionosphere and sonar, the ramp loss SVMs converge within a few iterations. Since
we require an extra iteration to check whether the weights have changed, this
means that for some of the datasets, the initial solution obtained using hinge loss
is already optimal. However, the fraction of support vectors (for the ramp loss

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 21

0 2 4 6 81012141618
Number of iterations

0.75

0.80

0.85

0.90

0.95

1.00

1.05

O
b
je

ct
iv

e
 v

a
lu

e

pima

0 2 4 6 8 101214
Number of iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
bupa

0 1 2 3 4 5 6 7 8
Number of iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ionosphere

0 1 2 3 4 5 6 7 8
Number of iterations

0.5

0.6

0.7

0.8

0.9

1.0

1.1
wpbc

0 1 2 3 4 5 6 7 8 9
Number of iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0
sonar

Figure 13. The normalized objective value for RLSVM0. To show the results on the same scale, the
presented objective value is divided by the initial objective value.

1 2 3 4 5 6
0

20
40
60
80

100
120
140
160
180

T
ra

in
in

g
 t

im
e
 (

s)

pima

1 2 3 4 5 6
0

2

4

6

8

10

12

14
bupa

1 2 3 4 5 6
0
2
4
6
8

10
12
14
16

ionosphere

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
wpbc

1 2 3 4 5 6
0

2

4

6

8

10

12
sonar

Figure 14. Training time in seconds. The algorithms (1-6) are 1:ZeroNormSVM, 2:CapOneNormSVM,
3:RLSVM2, 4:RLSVM1, 5:RLSVM0, 6:RLSVMC1.

1 2 3 4 5 6
2
4
6
8

10
12
14
16

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

arcene

1 2 3 4 5 6
2
4
6
8

10
12
14
16

gisette

1 2 3 4 5 6
0

100

200

300

400

500

600

700

T
ra

in
in

g
 t

im
e
 (

s)

arcene

1 2 3 4 5 6
800

1000

1200

1400

1600

1800

2000
gisette

Figure 15. Larger datasets: (left) Number of iterations till convergence; (right) Training time in seconds.
The algorithms (1-6) are 1:ZeroNormSVM, 2:CapOneNormSVM, 3:RLSVM2, 4:RLSVM1, 5:RLSVM0,
6:RLSVMC1.

classifiers), are further reduced by the following iterations.
The number of iterations are especially small for the non-convex regularizers

when combined with hinge loss. This indicates that one can achieve feature sparsity
without too much extra computation (refer to Figure 12). The objective value
decreases with each iteration, which is shown in Figure 13 for RLSVM0. This shows
that DCA decreases the objective value up to 50% for the considered datasets.

To show that the number of iterations till convergence does not increase signifi-
cantly for larger datasets, we use two datasets from the feature selection challenge
(Appendix A.7). As can be seen from Figure 15, the increase in computation time
is due to the limitations of the convex optimization solver, since the number of
iterations required remains small.

Our current implementation does not exploit the structure of the problems at all.
It uses a general interior point package for convex optimization, CVXOPT, which
does not take the constraint structure into account. However, the naive implemen-
tation only has training times of several seconds for all classifiers except for the
RLSVM0 which takes several minutes on a modern desktop computer (Figure 14).
The training time is dominated by the convex optimization solver. Standard tools
from SVM optimization such as SMO can be brought to bear, further improving
efficiency. The `1 norm optimization problems had twice the number of variables
w and η, which caused it to scale poorly when the number of dimensions are very
high. However, we believe that less naive implementations, such as proposed by
[20, 33] would alleviate this problem.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

22 Cheng Soon Ong and Le Thi Hoai An

5. Discussion

In this paper, we have proposed a robust continuous nonconvex optimization ap-
proach based on DC programming and DCA for the combined feature selection
and SVMs. We study the effect of different losses and regularizers on the sparsity
of the classifier. The two loss functions we consider are the hinge loss and the ramp
loss, and the four regularizers are the `2 and `1 norms, and the `0 and capped `1
functions. The results show that we can expect savings in the number of features
and the number of support vectors when we use sparsity inducing norms and losses.
The setting we use is very general and the losses can be extended to the structured
output setting.

One drawback of this approach is that some of the sparsity inducing functions
are non-convex. However, DCA has been broadly used in other fields [14] and here
we show that it is also a useful tool for optimizing non-convex objectives in ma-
chine learning. Since we use either the standard SVM or the OneNormSVM as an
initial point for the weights, the resulting local optimum would be at least as good
as the convex counterparts. Hence at the cost of slightly more computation time,
we can achieve a sparser solution. Using an appropriate approximation function of
zero-norm, we have obtained a DC polyhedral program. Our suitable DC decom-
position leads to a successive linear programming algorithm that converges after
a finite number of iterations to a critical point of the combined feature selection
and SVMs objective function. The computational results shows that the proposed
DCA performed well for all the datasets. In contrary with almost existing methods,
DCA seems to do well on sparse datasets, as seen in the second experiment. More-
over, since our proposed methods involve a small number of iterations of solving
a linear programming problem, it is suitable for all problems in this well studied
class. Therefore, DCA is a good candidate for the combined feature selection and
SVMs applications.

Note that the `0 approximation (Equation (4)) and the capped `1 (Equation (6))
are truncated regularizers. Unlike the other regularizers which are unbounded, the
`0 approximation is bounded above by 1. Recent work [12] has shown that such
truncation of the regularizer also reduces the bias in the feature selection properties
of the classifier.

We have glibly called the examples on the slope of the loss support vectors. In
principle, we can really only call the examples corresponding to the `2 regularizer
support vectors. Unfortunately, for the `1 and `0 regularizer, we cannot use the
representer theorem, and hence the notion of support vectors in these norms is not
theoretically founded. Further research in this direction is required.

In summary, our empirical results show that one can reduce the number of pa-
rameters used by a classifier by considering non-convex objective functions. Ad-
ditional benefits include good feature selection properties in the presence of noise
dimensions, and also robustness against random classification noise.

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 23

Appendix A. Optimization problems corresponding to Table 1

For completeness, we detail the optimization problems corresponding to related
work. In the following definitions, we let swi ∈ ∂hµ(w,b)

∂w , sbi ∈ ∂hµ(w,b)
∂b , and uj ∈

∂ha(w)
∂wj

. To simplify notation in the ramp loss formulations, we define sw =
∑n

i=1 swi
and sb =

∑n
i=1 sbi.

A.1. `2 with hinge loss

This is the standard SVM [2].

min
w,b,ξ

n∑
i=1

ξi + λ 〈w,w〉

subject to ξi > 1− yi(〈w, xi〉+ b)
ξi > 0.

A.2. `1 with hinge loss

This results in the one norm SVM [15].

min
w,b,ξ,η

n∑
i=1

ξi + λ
d∑
j=1

ηj

subject to ξi > 1− yi(〈w, xi〉+ b)
−ηj 6 wj 6 ηj
ξi, ηj > 0.

A.3. `0 with hinge loss

This was recently proposed in [10]. The objective function is given by

FA3(w, b) =
n∑
i=1

max(0, 1− yi(〈w, xi〉+ b)) + λ
d∑
j=1

ra(wj).

Initialization: Set k = 0 and initialize w0, b0 with a standard 1-norm SVM solu-
tion.
Set hyperparameter λ and a.
repeat

Compute uj ∈ ∂ha(wk)
∂wj

.
Solve the linear program to obtain wk+1, bk+1,

min
w,b,ξ,η

n∑
i=1

ξi + λa
d∑
j=1

ηj − λ 〈u,w〉

subject to ξi > 1− yi(〈w, xi〉+ b)
−ηj 6 wj 6 ηj
ξi, ηj > 0.

until FA3(wk+1, bk+1) = FA3(wk, bk)

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

24 Cheng Soon Ong and Le Thi Hoai An

A.4. `2 with ramp loss

This was recently proposed in [5]. The objective function is given by

FA4(w, b) =
n∑
i=1

`µ(yi, xi;w, b) + λ‖w‖22

Initialization: Set k = 0 and initialize w0, b0 with a standard SVM solution.
Set hyperparameters µ and λ.
repeat

Compute swi ∈ ∂hµ(wk,bk)
∂w and sbi ∈ ∂hµ(wk,bk)

∂b .
Solve the quadratic program to obtain wk+1, bk+1,

min
w,b,ξ

1
µ

n∑
i=1

ξi + λ 〈w,w〉 − 〈sw, w〉 − sbb

subject to ξi > µ− yi(〈w, xi〉+ b)
ξi > 0.

until FA4(wk+1, bk+1) = FA4(wk, bk)

A.5. `1 with ramp loss

This was recently proposed in [7]. The objective function is given by

FA5(w, b) =
n∑
i=1

`µ(yi, xi;w, b) + λ
d∑
j=1

|wj |

Initialization: Set k = 0 and initialize w0, b0 with a standard 1-norm SVM solu-
tion.
Set hyperparameters µ and λ.
repeat

Compute swi ∈ ∂hµ(wk,bk)
∂w , and sbi ∈ ∂hµ(wk,bk)

∂b .
Solve the linear program to obtain wk+1, bk+1,

min
w,b,ξ,η

1
µ

n∑
i=1

ξi + λ

d∑
j=1

ηj − 〈sw, w〉 − sbb

subject to ξi > µ− yi(〈w, xi〉+ b)
−ηj 6 wj 6 ηj
ξi, ηj > 0.

until FA5(wk+1, bk+1) = FA5(wk, bk)

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

Optimization Methods and Software 25

A.6. Details of UCI data

In Table A1, we show some details of the datasets obtained from
http://archive.ics.uci.edu/ml/datasets.html.

Name examples features Full name
pima 768 8 Pima Indians Diabetes
bupa 345 7 Liver Disorders
ionosphere 351 34 Ionosphere
wpbc 198 34 Breast Cancer Wisconsin (Prognostic)
sonar 208 60 Connectionist Bench (Sonar, Mines vs. Rocks)

Table A1. Details of UCI data

A.7. Details of feature selection challenge data

In Table A2, we show some details of the datasets obtained from
http://www.nipsfsc.ecs.soton.ac.uk/datasets/, where we merged the train-
ing and validation sets.

Name examples features
Arcene 10000 200
Gisette 5000 7000

Table A2. Details of the feature selection challenge data

December 7, 2011 14:1 Optimization Methods and Software DCASparse˙OMS

26 REFERENCES

References

[1] Asa Ben-Hur, Cheng Soon Ong, Sören Sonnenburg, Bernhard Schölkopf, and Gunnar Rätsch. Support
vector machines and kernels for computational biology. PLoS Computational Biology, 4(10):e1000173,
2008.

[2] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, 2002.
[3] Phil Long and Rocco Servedio. Random classification noise defeats all convex potential boosters. In

International Conference on Machine Learning, 2008.
[4] Yoav Freund. A more robust boosting algorithm. Technical Report arXiv:0905.2138.v1, Computer

Science and Engineering, UCSD, 2009.
[5] Ronan Collobert, Fabian Sinz, Jason Weston, and Leon Bottou. Trading convexity for scalability.

In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages
275–300, 2007.

[6] Chuong B. Do, Quoc Le, Choon Hui Teo, Olicier Chapelle, and Alex Smola. Tighter bounds for
structured estimation. In Neural Information Processing Systems, 2008.

[7] Yichao Wu and Yufeng Liu. Robust truncated-hinge-loss support vector machines. Journal of the
American Statistical Association, 102(479):974–983, 2007.

[8] I. Steinwart, D. Hush, and C. Scovel. An oracle inequality for clipped regularized risk minimizers. In
Neural Information Processing Systems, pages 1321–1328, 2007.

[9] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Information Science and Statis-
tics. Springer Verlag, 2008.

[10] Hoai An Le Thi, Hoai Minh Le, Van Vinh Nguyen, and Tao Pham Dinh. A DC programming
approach for feature selection in support vector machines learning. Advances in Data Analysis and
Classification, 2(3):259–278, 2008.

[11] Dori Peleg and Ron Meir. A bilinear formulation for vector sparsity optimization. Signal Processing,
88:375–389, 2008.

[12] Tong Zhang. Some sharp performance bounds for least squares regression with l1 regularization.
Annals of Statistics, 37(5A):2109–2144, 2009.

[13] Tao Pham Dinh and Hoai An Le Thi. DC optimization algorithms for solving the trust region
subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998.

[14] Hoai An Le Thi and Tao Pham Dinh. The DC (difference of convex functions) programming and
DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations
Research, 133:23–46, 2005.

[15] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Neural Infor-
mation Processing Systems, 2004.

[16] Robert Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc B.,
58(1):267–288, 1996.

[17] Jun Zhu and Eric P. Xing. On primal and dual sparsity of markov networks. In International
Conference on Machine Learning, 2009.

[18] Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal
of Machine Learning Research, 2:67–93, 2001.

[19] Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-dimensional
data. Annals of Statistics, 37(1):246–270, 2009.

[20] Olvi L. Mangasarian. Exact 1-norm support vector machines via unconstrained convex differentiable
minimization. Journal of Machine Learning Research, 7:1517–1530, 2006.

[21] Gilles Gasso, Alain Rakotomamonjy, and Stéphane Canu. Recovering sparse signals with a certain
family of non-convex penalties and DC programming. IEEE Transactions on Signal Processing,
57(12):4686–4698, 2009.

[22] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neur. Comp., 15(4):915–936, 2003.
[23] J. Neumann, C. Schnörr, and G. Steidl. Combined SVM-based feature selection and classification.

Machine Learning, 61(1-3):129–150, 2005.
[24] N. Krause and Y. Singer. Leveraging the margin more carefully. In Proceedings of the twenty-first

international conference on Machine learning, 2004.
[25] Y. Liu, X. Shen, and H. Doss. Multicategory ψ-learning and support vector machine: Computational

tools. Journal of Computational and Graphical Statistics, 14:219–236, 2005.
[26] Y. Liu and X. Shen. Multicategory ψ-learning. Journal of the American Statistical Association,

101:500–509, 2006.
[27] Hoai An Le Thi, T. Belghiti, and Tao Pham Dinh. A new efficient algorithm based on DC programming

and DCA for clustering. Journal of Global Optimization, 37:593–608, 2006.
[28] Hoai An Le Thi, Hoai Minh Le, and Tao Pham Dinh. Optimization based DC programming and

DCA for hierarchical clustering. European Journal of Operational Research, 183(1067–1085), 2007.
[29] P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector

machines. In Proceedings of International Conference on Machina Learning, 1998.
[30] Tao Pham Dinh. Algorithms for solving a class of non convex optimization problems. methods of

subgradients. In Fermat Days 85. Mathematics for Optimization. Elsevier Science Publishers, B.V.
North-Holland., 1986.

[31] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex Analysis. Springer
Verlag, 2001.

[32] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

[33] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

