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1 Multiclass Multiple Kernel Learning

This section is provides the detailed derivation for the specific case of soft margin. Refer
to [1]] for the general formulation.

Corollary 1. When choosing the hinge loss, ((t) := C'max (0,1 — t), the optimum w
can be computed as
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where o € R™ Y is the solution of the quadratically constrained linear program de-
fined by
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Consider the hinge loss,

£(t) ;== Cmax (0,1 —t)



where we obtain:
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Substituting,
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Note that the constraints in the second line are quadratic and are non-convex. We sub-
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stitute v := [r Wy, and since a quadratic over a linear function is convex (i.e. % is

convex), We obtain the following convex optimization problem.
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Observe that the constraints are now linear.
The Lagrangian of this is given by
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with Lagrange variables & € R™*Y,0 < €, € RP,and 0 < n € R™*Y.

We find the stationary points by setting the partial derivatives with respect to the

primal variables
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to zero. Substituting|6|into the Lagrangian, the linear terms in s;,, cancel out,
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Substituting [3into
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Using[4] we obtain the dual Lagrangian,
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From|[6] and the fact that ji;,, > 0, we have 7);,, > Gy, and substituting this into[5} we

get the constraint
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2 Experiments

To be clear about the definitions of the various performance measures used to report
multiclass results, we collect all the definitions in this section. Most measures are de-
fined with respect to a particular class, say A, and can be calculated from the corre-
sponding confusion matrix:

Predicted Label
A -A
Actual A|True Positive (TP) False Negative (FN)
Label —A|False Positive (FP) True Negative (TN)

From the confusion matrix above, we can define the various performance measures,
including the Matthews Correlation Coefficient (MCC).

Measure Formula

(TPTTN)
Accuracy (TP+TN+FP+FN)
Precision %

TP
R.e.CE.lH / Sen- (TP+FN)
sitivity
Specificity %
MCC TPTN—_FPFN
\/(TP+FN)(TP+FP)(TN+FP)(TN+FN)




2.1 Comparison on TargetP dataset

Data Class Our Method TargetP TargetLoc
Accuracy |Precision|Recall| F1-Score | MCC ||Recall|SPIMCC|/Recall|SPIMCC

plant |ch ||96.7 £0.4| 954 | 84.4 |89.5+ 1.4/87.8 15| 8 |69 72 88 |76] 78
mi (953 +£04] 92.0 | 973 |94.6 £0.4{90.5+ 0.8 82 (90| 77 87 94| &4
SP |[97.4+£03] 96.0 | 945 |952+0.7[93.5+ 09| 91 |95 90 93 97| 93
OT |[95.6+0.3] 873 | 86.7 |86.9+1.4(843+1.6| 8 |78| 77 92 |84| 86

nonplantmi  ||96.9 £0.2| 87.8 | 90.1 |88.9 £0.9(87.1 £ 1.0 89 [67| 73 91 |77] 81
SP |[96.8 03] 94.4 | 93.6 |94.0+0.6/91.8 =0.8]] 96 (92| 92 95 (92| 91
OT |[949 03] 959 | 957 |95.8+£0.3(89.3+0.7]| 88 [97| 82 91 |97| 86

Table 1. Comparing with TargetP and TargetLoc on sensitivity (SE), specificity (SP)
and Matthew’s Correlation Coefficient (MCC) on the plant and non-plant dataset. The
classes are chloroplast (ch), mitochondria (mi), secretory pathway (SP) and other (OT).




times mean (), kernel
selected
10 26.53% RBF on log BLAST E-value, 0 = 10°
10 19.77% RBF on BLAST E-value, o0 = 103
10 16.53% RBF on inv phyl. profs, ¢ = 300
10 11.12% RBF on lin phyl. profs, o = 1
10 5.50% motif (e,0,0,0,0) on [1, 15]
10 4.68% motif (e,0,0,0,e) on [1, 15]
10 3.48% motif (e,0,0,0,0) on [1, 60]
8  3.17% motif (e,,0,0,e) on [1, 60]
9  2.56% motif (8,0,0,0,0) on [1, Inf]
5 1.44% motif (e,0,e,0,8) on [1, 60]
7 1.05% motif (e,0,0,8,0) on [1, 15]
7 0.95% motif (e,e,0,0,0) on [1, Inf]
3 0.65% motif (e,e,e,0,e) on [1, 60]
5  0.64% motif (e,0,0,0,e) on [1, Inf]
2 0.40% motif (e,0,0,0,0) On [17 }
6  0.38% motif (e,0,8,0,0) on [—15, Inf]
7 0.29% motif (e,0,0,0,0) on [—15, Inf]
3 0.26% motif (e,0,e,0,8) on [1, 15]
2 0.18% motif (e,0,0,8,0) on [1, 60]
3 0.12% linear kernel on BLAST E-value
2 0.12% motif (e,0,0,0,e) on [1, 15]
2 0.08% motif (e,0,8,0,8) on [—15, Inf]
1 0.07% motif (e,e,8,0,e) on [—15, Inf]
1 0.03% motif (e,e,0,0,0) on [1, 60]
1 0.02% motif (e,e,0,0,8) on [1, 15]

Table 2. Kernels selected in the ten repetitions of experiments on the plant dataset,
sorted by importance as indicated by the averaged coefficient 3. Note that the selec-
tion is very consistent across the repetitions, and that only a small fraction of kernels
obtained a positive weight in any repetition. The first column shows the considered re-
gion of the protein, starting with 1 at the N-terminus; co means that the region extends
to the C-terminus. The second column shows the pattern associated with the kernel.



times mean ;. kernel
selected

9 30.69% RBF on log BLAST E-value, o = 10°
9 29.46% RBF on BLAST E-value, 0 = 10°
10 11.85% RBF on inv phyl. profs, o = 300
9  7.15% RBF on lin phyl. profs, c = 1
4.48% motif (e,0,0,0,0) on [1, 15]
3.23% motif (e,0,0,e,0) on [1, 15]
2.32% motif (e,0,0,0,0) on [1, Inf]
2.17% motif (e,0,0,0,0) on [1, 60]
1.92% motif (e,0,0,8,0) on [1, 60]
1.53% linear kernel on BLAST E-value
1.48% motif (e,e,8,0,0) on [1, Inf]
0.94% motif (e,0,,0,0) on [1, 15]
0.54% motif (e,e,0,0,) on [1, 60]
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0.06% motif (e,e,0,e,e) on [1,60]
0.04% motif (e,e,0,0,0) 0n [1, Inf]
0.04% motif (,e,0,0,0) on [1, 60]

(L,
0.38% motif (e,0,e,0,8) on [1, 60]
0.35% motif (e,e,,0,e) on [1, 60]
0.32% motif (e,0,0,,0) on [1, 15]
0.29% motif (e,0,0,0,e) on [1, 60]
0.23% motif (e,0,0,0,8) on [1, 15]
0.21% motif (e,0,0,e,8) on [1, 60
0.11% motif (e,0,0,0,e) on [—15, In f]
0.08% motif (e,0,0,0,e) on [1, Inf]
0.08% motif (e,e,0,0,e) on [—15, Inf]
0.06% motif (e,e,0,0,0) on [1 ,Inf]
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Table 3. Analoguous to Table 2] but for nonplant data.



2.2 Comparison on PSORTdb dataset

Data Class Our Method PSORTD v2.0
Accuracy |Precision|Recall| F1-Score | MCC ||Precision|Recall|F1-Score

PSORT+|C 97.7+0.7 954 |99.1 [97.1 £0.8(953 13| 97.1 | 8.6 | 91.6
CM |[98.1£0.5] 989 |90.8 [943 +£1.8/93.5+£1.8|| 969 |91.3| 94.0
CW |[979+£04] 936 |869 [89.7+1.7/888 18| 947 | 85| 915
EC |[96.2+0.5] 942 |949 [944+£0.791.6 £1.0|| 939 | 67.8| 787

PSORT- |C 979 +03| 90.6 |99.6 94.8+£0.7(93.7+0.8|| 929 | 70.1 | 799
CM |[98.9 £0.3] 100.0 | 94.9 [97.3 £0.6/96.7£0.7|| 953 |92.6 | 939
P 98.0+£02| 941 | 948 (944 +£0.6(932+0.7| 955 | 692 | 80.3
OM (993 +£0.1] 999 | 97.7 |98.8£0.31983£0.3|| 974 | 949 | 96.1
EC |[984+£02] 953 |92.8 [94.0+£0.8/93.1£09| 974 | 789 | 872

Table 4. Comparing with PSORTb v2.0 on singly located proteins from PSORTdb on
bacteria. The classes are cytoplasm (C), cytoplasmic membrane (CM), periplasm (P),
outer membrane (OM), extracellular (EC) and cell wall (CW).

Data Class Our Method
Accuracy |Precision|Recall| F1-Score | MCC

PSORT+|C 949+ 09| 90.6 |96.7 [93.5+1.1{189.4+19
CM ([95.7£0.7] 947 | 83.6 [88.6£2.1/86.3£23
CW (|97.1£04] 899 | 845 [86.3+19(852+20
EC ([93.7£0.8/ 909 |91.3 |91.1+£1.1|1863 £ 1.7

PSORT- |C 955+04| 839 |96.8 (89.9+1.0[87.4+12
CM |[97.1 £0.2| 973 | 89.1 [92.9+0.6(91.3+0.8
P 945+04| 84.1 |89.2 (86.5+1.0[83.2+12
OM |[97.7+£03| 982 | 93.7 [95.8+0.6/94.4+0.8
EC ([96.7£0.3] 925 | 852 (88.6£1.1186.8£1.3

Table 5. Results using all data. The classes are cytoplasm (C), cytoplasmic membrane
(CM), periplasm (P), outer membrane (OM), extracellular (EC) and cell wall (CW).



times mean (), kernel
selected
10 41.77% RBF on BLAST E-value, o = 10°
10 27.32% RBF on lin phyl. profs, c = 1
10 6.23% motif (e,0,0,0,0) on [1, Inf]
10 4.01% RBF on inv phyl. profs, o = 300
10 3.75% motif (e,0,e,0,8) on [1, Inf]
8  3.03% RBF on log BLAST E-value, o = 10°
9  2.24% motif (e,0,e,0,e) on [1, 60]
7 2.21% motif (e,0,0,e,8) on [—15, Inf]
9  1.81% linear kernel on BLAST E-value
5  1.64% motif (e,0,,0,0) on [—15, Inf]
10 1.32% motif (e,0,0,0,8) on [1, 15]
6  1.25% motif (e,0,e,0,0) on [1, Inf]
4 0.92% motif (e,,0,0,0) on [1, Inf]
8  0.53% motif (e,0,0,0,0) on [1, 15]
4 0.43% motif (e,0,0,0,0) on [1, 60]
6  0.43% motif (e,0,0,0,0) on [—15, Inf]
2 0.32% motif (e,0,0,8,0) on [1, 0]
4 0.25% motif (e,0,0,0,8) on [1, Inf]
2 0.17% motif (e,0,0,0,8) on [— 157 Inf]
2 0.16% motif (e,0,0,0,8) on [1, 60]
1 0.11% motif (e,0,e,0,0) on [1, 15]
1 0.07% motif (e,0,,0,8) on [—15, Inf]
1 0.05% motif (e,e,0,0,0) on [1, 15]

Table 6. Analoguous to Table[2] but for gram-positive bacteria for PSORTb.



times mean ;. kernel
selected

10 35.00% RBF on BLAST E-value, o = 10°
10 26.87% RBF on log BLAST E-value, o = 10°
10 16.17% RBF on lin phyl. profs, o = 1
10 5.04% motif (e,0,0,0,0) on [1, Inf]
10 2.82% RBF on inv phyl. profs, o = 300
10  2.64% linear kernel on BLAST E-value
10 1.97% motif (e,0,0,8,0) on [1, Inf]
9  1.57% motif (e,e,0,0,0) on [1, Inf]
10 1.51% motif (e,0,0,0,0) on [1, 60]
10 1.14% motif (e,0,0,0,0) on [1, 15]

(1,
(1,
7  0.86% motif (e,0,e,0,0) on [1, Inf]
10 0.82% motif (e,0,0,0,8) on [—15, Inf]
5 0.65% motif (e,0,e,0,8) on [1, 60]
5  0.60% motif (e,0,0,0,e) on [1, Inf]
4 0.54% motif (e,e,0,e,e) on [1, 60]
2 0.36% motif (e,e,e,e,) 0n [1,60]
6  0.35% motif (e,0,e,0,e) 0n [1, 15]
6  0.25% motif (e,0,0,e,0) on [—15, Inf]
3 0.21% motif (e,0,e,0,e) on [1, 15]
3 0.18% motif (e,0,0,e,e) on [1, 15]
2 0.13% motif (e,0,0,0,e) on [1, 15]
5 0.11% motif (e,0,0,0,0) on [—15, Inf]
2 0.10% motif (e,0,0,e,0) on [ , 15}
1 0.09% motif (e,0,0,e,8) on [1, 60]
1 0.03% motif (e,e,0,0,0) on [—15, Inf]
I 1,

0.01% motif (e,e,e,0,e) on [1, Inf]

Table 7. Analoguous to Table 2] but for gram-negative bacteria for PSORTD.



References

1. A. Zien and C.S. Ong. Multiclass multiple kernel learning. In International Conference on
Machine Learning, 2007.



	Supplement to: An Automated Combination of Kernels for Predicting Protein Subcellular Localization
	Cheng Soon Ong, and Alexander Zien,

