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Abstract—Wheel defects on railway wagons have been iden-
tified as an important source of damage to the railway infras-
tructure and rolling stock. They also cause noise and vibration
emissions that are costly to mitigate. We propose two machine
learning methods to automatically detect these wheel defects,
based on the wheel vertical force measured by a permanently
installed sensor system on the railway network. Our methods
automatically learn different types of wheel defects and predict
during normal operation if a wheel has a defect or not. The first
method is based on novel features for classifying time series data
and it is used for classification with a Support Vector Machine.
To evaluate the performance of our method we construct multiple
data sets for the following defect types: flat spot, shelling and non-
roundness. We outperform classical defect detection methods for
flat spots and demonstrate prediction for the other two defect
types for the first time.

Motivated by the recent success of artificial neural networks
for image classification we train custom artificial neural networks
with convolutional layers on two-dimensional representations of
the measurement time series. The neural network approach
improves the performance on wheels with flat spots and non-
roundness by explicitly modelling the multi sensor structure of
the measurement system through multiple instance learning and
shift invariant networks.

Index Terms—Machine learning, Statistical learning, Support
vector machines, Pattern analysis, Railway safety, Railway acci-
dents, Wavelet transforms, Supervised learning, Artificial neural
networks

I. INTRODUCTION

EARLY detection of serious wheel defects on freight trains
are an essential part in preventing damage to the railway

infrastructure and in providing the train operators with timely
information on necessary repairs, that can prevent further
deterioration of the wheels.

Wheel defects of railway vehicles directly cause an increase
in attrition of and damage to the railway infrastructure, e.g., the
track systems or the civil engineering works, thereby adding
additional costs to maintenance and repair and leading to a
reduced lifetime and availability of rolling stock. The life span
of the railway infrastructure is significantly shortened by the
negative effects of wheel defects. The life span of railway
bridges for instance is calculated with an assumed maximal
dynamical load of 21 tons. Due to wheel defects the actually
occurring dynamical load can be up to 50 tons, or 270% higher
than the theoretically assumed maximum, thus shortening the
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life span. Wheel defects also accelerate crack-growth on the
rail tracks and lead to premature failure of the rail system.

Another important effect caused by wheel defects are
ground vibration and noise emissions. In the European Union
(EU) Project “Railway Induced Vibration Abatement Solu-
tions” (RIVAS)1 27 partners from nine countries investigated
the source and mitigation measures for noise and vibration
emissions. They found that reducing wheel defects by wheel
maintenance significantly reduces vibration and noise emis-
sions directly [1]. Therefore, it is recommended to use timely
and targeted maintenance of train wheels as an economic
means to reduce emissions [2]. This measure is all the more
important as the density and usage of modern railway networks
is steadily increasing and failures quickly disrupt operation of
the whole network or parts of it. Since 2008, all states in the
EU are advised to employ noise emission ceilings. Switzerland
started a noise abatement program based on emission ceilings
that requires the infrastructure manager to curb emissions
above the ceiling. This abatement programme leads to total
costs of 1.5 billion CHF [3].

In this paper we propose a method of detecting defective
wheels. This classification method promises to increase the
reliability of the railway infrastructure, to reduce the cost
of freight train operation and to save additional investments
on noise protection measures. To reach this goal without the
costly construction of further measurement sites or newly built
sensors, we propose the use of statistical methods that allow
us to automatically inspect the existing data and extract the
information about defective wheels that is already present.

Our proposed methods do neither require a model of the
measurement system, nor of train dynamics or wheel defects.
The methods enable us to predict defects on wheels where
there is no prior understanding of how these defects manifest
themselves in the measurements. The methods detect and clas-
sify different types of defects based on measurements during
normal operation where the trains pass the measurement sites
in full operational speed. The features that we have developed
for the use in supervised learning are general and can in
principle be used for any time series data and are not restricted
to specific defect types. In a second step we automatically
learn features directly from the raw measurement signal.

A. Contribution

Our main contribution are two methods for automatic rail-
way wheel defect detection and classification through vertical
force measurements of trains running in full operational speed.
For the first method we design novel wavelet features for time
series data from multiple sensors and we learn a classifier

1http://www.rivas-project.eu
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using a support vector machine. For the second method we
design and train convolutional neural networks for different
wheel defect types by deep learning.

We evaluate our novel and other classical methods for wheel
defect detection on two labeled data sets with different types
of wheel defects, that we have constructed from calibration
runs and from maintenance reports.

B. Related Work

While there has been research on machine learning methods
for railway track inspection [4–6] or condition based mainte-
nance [7], to our knowledge machine learning methods for
railway wheel defect detection have not been developed so
far. There has been some research on sensor systems for wheel
defect detection on freight trains. In Nenov, Dimitrov, Vasilev,
et al. [8], the authors analyse the signal from acceleration
sensors and demonstrate that they can visually see a difference
between the measurements of wheels with flat spots and
good wheels but they do not propose a method for detection.
Another related work [9] advocates the use of Fibre Bragg
Gating sensors for defect detection of rails to monitor track
conditions. The authors investigate the wavelet decomposition
of pressure signals but they do not propose a method or
threshold for automatic defect detection. Jianhai, Zhengding,
and Boshi [10] use continuous wavelet analysis of acceleration
sensor data to visually inspect the measurements and conclude
that there is a difference in the coefficients for wheel with flat
spots and defect-free wheels.

Different kinds of track scales are in use in the field.
They can in principle be used to detect flat spots. But to our
knowledge they do not use machine learning to train a defect
classifier. A general advantage of our proposed system is that
the measurement system is relatively inexpensive, but we can
show that it can still be used to detect wheel defects, thanks
to our proposed machine learning methods.

II. MEASUREMENT SYSTEM AND DEFECT TYPES

A. Wheel Load Checkpoint

The infrastructure division of the Swiss railway operator
SBB operates and maintains the one of the most heavily
used railway network of the world. In 2010, 95.4 km of
trains travelled one kilometer of track on average; this value
documents the highest utilisation of network capacity in the
world [11]. Automatically monitoring trains and network are
thus important to minimise the risk of incidents that quickly
affect the scheduling of trains on the network. SBB infrastruc-
ture operates an integrated wayside train monitoring system
that controls safety relevant aspects of the railway traffic and
infrastructure.

As part of this system, the wheel load checkpoints (WLC)
measure vertical force through strain gauges installed on the
rails. These devices are used for observing maximal axle
load, maximal train load, load displacement and grave wheel
defects. Our study investigates the use of machine learning
methods to defect and classify wheel defects based on the
data obtained through these wheel load checkpoints.

Sensors
Wheel

Sleepers

Figure 1: Multiple vertical wheel force measurements of a
train wheel by the four sensors of one measurement bar. The
wheel is affected by a discrete defect that manifests itself in
the measurement of the first sensor. The remaining sensors do
not directly observe the defect.
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Figure 2: Diagram of one sensor on a measurement bar of the
WLC. The strain gauges are attached to the side of the wheel
between two sleepers and cover 28cm of vertical wheel force
of the wheel rolling on the track.

Each WLC consists of four 1m long measurement bars with
four strain gauges (referred to as sensors in the following) per
measurement bar. Since on each side two measurement bars
with 4 sensors are installed, each wheel that runs over the
WLC is measured eight times at different parts of the wheel.
Fig. 1 shows schematically the measurement of one wheel
by one measurement bar. In this example a defect is directly
observed by the measurement of the first sensor.

See Fig. 2 for a diagram of one sensor. The strain gauges
are installed perpendicular on the centerline of the railroad
track and they are combined into one vertical wheel force
measurement. One sensor covers approximately 30cm of the
wheel circumference.

The wheel load checkpoints are installed on multiple strate-
gic sites on the railway network: ten on the border to Switzer-
land at the entrance to the railway network maintained by SBB
and a dozen within the network.
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(a) (b)

Figure 3: Picture of a serious flat spot on a train wheel of
SBB (a) and the resulting idealized wheel load measurement
(b). (Picture taken from Wikipedia/Bobo11)

B. Railway Wheel Defects

A relatively well understood wheel defect type is the flat
spot or wheel flat. This defect occurs when the wheel stops
rotating (for instance during an emergency brake) and is
dragged along the track. Fig. 3 shows an image of a flat spot
on a railway wheel of SBB and the corresponding idealized
measurement obtained by the WLC if the flat spot directly hits
a sensor of the measurement system. Grave wheel flats can be
detected by looking at simple statistics (c.f. Section VI-B) of
the measurement if the defect hits the sensor perfectly. To be
able to detect flat spots that are less grave or that do not hit a
sensor directly, more advanced machine learning methods are
required. We demonstrate such cases on our first data set in
Section VII-B.

Apart from flat spot, other common wheel defects on rail-
way vehicles are non-roundness and shelling [12, 13]. Wheels
with non-roundness have a high influence on the vibration
and noise emitted by a passing train and, therefore, they are
an important type of defect to detect [1, 13]. Non-roundness,
in contrast to shelling and flat spot, is a non-discrete type of
defect. This characterization means that the defect affects a
large part of the wheel and changes its shape in a non-local
way. We create an additional data set that contains the defect
types flat spot, non-roundness and shelling (Section VI-C)
and then, we compare the performance of our two machine
learning methods in predicting these three defect types.

III. TIME SERIES REPRESENTATION FOR DEFECT
DETECTION

An important step in any machine learning method is finding
a representation of the original measurements that supports
discrimination between different classes. For instance: the
mean of the measurement signal of a wheel with or without a
flat spot coincide if the weight of the axle is the same and the
defect perfectly hits a sensor. The standard deviation on the
other hand differs significantly, since the force exerted on the
track is much higher for a wheel with the flat spot than for
non-defective wheels. For other types of defects like shelling
this observation does not hold, as the variance of the measured
force does not significantly differ from a non-defective wheel,
but there is a clear difference in higher frequency bands of
the measurement, c.f. Fig. 4. These observations suggest to
decompose the signal by a multiscale wavelet analysis in order
to extract indicative frequency features for time series data.
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Figure 4: Signals and wavelet coefficients at different levels
(C1 to C3) of a defective (right) and non-defective (left) wheel.
The power in the high frequency coefficients C2-C3 reveal the
defect.

A. Wavelet Transform

The Discrete Wavelet Transform (DWT) decomposes a
signal over an orthonormal basis of dilated and transformed
wavelets [14]:

ψj,k(t) =
1√
2j
ψ

(
t− k2j

2j

)
, (1)

where ψ denotes mother wavelet, j and k the scale and shift
parameters.

The orthogonal wavelets given by definition (1) at different
scales 2j resolve the original signal at different resolutions.
The DWT can thus be employed to construct a multiresolution
signal approximation [14]. An equivalent way of calculating
the DWT is by passing the original signal through a series of
appropriate high-pass and low-pass filters and sub-sampling
operations, where at each level the output of the high-pass
filter is stored as the detail coefficients for that level and the
output of the low-pass filter is decomposed further at the next
level until level T = log(n) is reached, where n is the length of
the original signal. If the high-pass and low-pass filters in this
filter bank are derived from the child wavelets in Equation 1,
the detail coefficients (C1, . . ., CT ) correspond exactly to the
wavelet coefficients.

The wavelet transform has been extensively used in fields
ranging from biomedical signal processing [15], geosciences
[16] to image compression [17]. Since weight measurement
signals and the defect effects on the signal are both localized
in time and frequency the wavelet transform explicitly encodes
this local perturbation and, therefore, has an advantage over the
fourier transform in our application. The weight measurement
signals also show a self-similar behavior which suggests the
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wavelet transformation as an adapted set of basis functions
with approximately the same amount of power per frequency
band.

B. Wavelet Features for Defect Detection

To extract features from the measurement signals of the
wheels, we first compute the wavelet decomposition of each
signal. Each time series is now represented by the distribu-
tions of the wavelet coefficients at the different levels of the
multiscale decomposition. To represent the distribution of the
coefficients, n moments of the empirical distribution of the
coefficients are computed. This representation captures higher
order behaviour while still maintaining invariance to shift or
scale of the defects as measured by the sensors. The procedure
is summarized by Algorithm 1 and the function to compute
the central moments is given below by Equation 2, where the
average is used as the first moment.

moment1(x) = x̄, momentm>1(x) =
1

n

n∑
i=1

(xi − x̄)
m

(2)

Algorithm 1 Wavelet feature computation

Input: W t: coefficients at the t-th level of a T -level DWT.
1: k = 1
2: for t = 1 . . . T + 1 do
3: for m = 1 . . .M do
4: F k = momentm(W t)
5: k += 1
6: end for
7: end for

Output: F k: k = 1, . . . ,M · (T + 1) wavelet features.

As explained in Section II-A, we observe eight signals for
each wheel that we want to classify. To compute features
for one wheel, we first concatenate the measurements of
all the sensors and then compute the wavelet features on
this single time series. When we are processing localized
defects, like a flat spot, that are observable as a change in
vertical force on one sensor, the specific information, which
sensor has observed a defect, does not play a role due to
the scale invariance of our feature construction method. For
each sensor, the measurement signal can be divided into the
regions of no load, raising slope, load measurement window
and falling slope. Even though the load measurement window
is relatively small we can still observe wheel defects that
manifest themselves in one of the slopes or during the no load
phase before and after the load measurement. To capture this
information, a window of size three times the measurement
window is used for feature construction. In all our experiments
we use the Daubechies-5 wavelet family as basis functions
[18].

C. Load Normalized Features

In addition to the wavelet features computed on the full
concatenated signals of all the sensors we also compute

wavelet features for each sensor separately. Whereas the fea-
ture construction based on the full signal pursued the strategy
to capture as much information as possible, the goal here is
to construct features that are normalized with respect to the
load measurement.

To this end, we first subtract an idealized measurement
curve from the signal of each sensor and then compute wavelet
features with Algorithm 1 on the difference. Additionally we
add the mean squared error of the signal to the measurement
template as a feature per sensor.

D. Measurement Site

Each wheel load checkpoint exhibits different physical
characteristics due to small differences in the ground below
the tracks and the curvature of the track before the checkpoint.
These characteristics change the wheel load measurement.
Small unevenness in the tracks also manifest themselves as
noise or small bumps in the signal. Therefore, we add the site
of the wheel load checkpoint as additional feature to enable
different predictions based on the origin of the measurement
site. We encode this information as a unary code or a one-
hot vector, where every dimension represents a site and is 1
only for measurements from that site. When in the future a
new measurement site would be built on the railway network,
training data for the new site would need to be collected.

E. Load

A train with different load, but the same waggons results in
different wheel measurements for the same defect types, since
the weight of the train plays a significant role how the defect
exerts its pressure on the sensors. Another important reason
to add information about the load to the feature set arises
from the following observation: certain defect classes like non-
roundness mostly change the average of a sensor reading, but
only marginally affect higher order information. An oval wheel
for instance will result in higher load measured by some of the
sensors and lower load by others, but will not be detected as
a defect wheel by individual load normalized measurements.
The mean load of all the sensors, standard deviation over the
mean load per sensor and the mean load for each sensor are
added to the feature set.

IV. AUTOMATIC REPRESENTATION LEARNING

An alternative to predefined feature representations are pro-
vided by deep neural networks that learn the features from data
in a task specific way to maximize correct classification. In this
section we introduce a learning method to automatically infer
a representation of the measurements for the classification of
wheel defects based on deep artificial neural network models
(DNN). These models have gained considerable popularity in
recent years, mostly due to their success in image classification
and segmentation tasks [19, 20], in speech recognition [21] and
quite recently in reinforcement learning for playing Go [22].

DNN for wheel defect detection alleviates the burden of the
modeller to manually construct features and allows to learn
representations from time series directly. Another benefit is
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the flexibility that comes with designing decision functions as
stacked activation layers. This flexibility allows us to design
a network specifically for certain defect types.

A. 2-Dimensional Time Series Representation

Motivated by the success of convolutional neural networks
on image classification tasks [23] we propose the use of 2D
representations of the measurement signals for wheel defect
detection. Recently Gramian Angular Fields (GAF) have been
proposed [24] as a 2-dimensional encoding of time series data.
This representation has been shown to capture cross-temporal
dependencies and to enhance classification performance when
used as input to a convolution network. A GAF is constructed
by first transforming the time series to polar coordinates and
then computing trigonometric sums between all points (See
Wang and Oates [24] for details of the construction).

As a second 2D representation we also considered trans-
forming the time series into the image of its 2D graph. This
procedure is motivated by the fact that a human expert would
also look at such a two-dimensional representation to classify
wheel defects. The addition of the value of the signal as the
second dimension allows the network to learn different filters
for different values of the signal at the same point in time (the
first dimension). The procedure is summarized in Algorithm 2.

Algorithm 2 Compute 2D time series representation

Input: X = (Xt)1≤t≤N : time series.
Input: r > 0: resolution.
Input: [Vmin, Vmax]: window.

1: h =
⌈
Vmax−Vmin

r

⌉
2: M = 0h×N
3: X = X − Vmin

4: for t = 1 . . . N do
5: MdXt

r e,t = 1

6: end for
7: for m = 1 . . . N − 1 do
8: Set all entries touching the segment

[MdXm
r e,m,M

⌈
Xm+1

r

⌉
,m+1

] to 1, drawing a line

segment between the two points.
9: end for

Output: M : 2D graph of time series X .

B. DNN Network Architecture

We use a Convolutional Neural Network (CNN) based ar-
chitecture to automatically extract the discriminating features.
Here, we considered the 8 signals of the WLC as different
channels. Our networks are composed of two modules: the
mono channel feature extracting layers and cross channel fea-
ture extracting layers respectively from bottom (input layer) to
top (classification layer). The mono channel feature extracting
layers take each channel independently and compute high level
features in parallel that can then be processed by the cross
channel feature extracting layers. Furthermore, the weight of
the mono channel feature extracting layers are shared across
all channels, allowing it to learn from all channels at once.

This approach is both computationally efficient, and also well
suited for the data set. Since each channel represents a load
measurement of the wheel from one sensor of the WLC the
network learns features from the signals and also a relationship
between the signals.

1) Mono channel feature extracting layer: This module is
a traditional CNN, composed of a sequence of convolutional
layers, eventually followed by a fully connected layer:

a) Convolutional layer: A convolutional layer is a com-
bination of a number of filtering layers, each followed by a
non-linearity and a pooling layer. The settings chosen for each
of these layers are specified below. The filtering layer outputs
convolutional products of the input by learnable filters with
a fixed receptive field. Every filter layer is followed by an
activation function. We use a Parametric Rectified Linear Unit
(PReLU), as it better back-propagates the gradient compared to
the tangent hyperbolic or sigmoid functions, which can easily
saturate. The PReLU non-linearity also prevents neurones
from “dying out” as can be the case for the popular ReLU
units, by introducing a learnable non-zero slope to the negative
side of the input[25].

PReLU(x) = max(0, x) + a ·min(0, x) , (3)

where a is an adaptable parameter.
The pooling layers reduce the resolution of the input time

series and the learned features at each layer of the deep
neural network. This max-pooling allows the classification to
be robust to small variations of learned features at each layer.
In all of our convolutional layers, we used a pooling layer
with filters of size 2× 2 applied with downsampling ratio of
two, taking the maximum value among the four pixels in its
receptive field.

b) Fully connected layer: Neurons in a fully connected
layer have full connections to all units in the previous layer.
The layer outputs biased linear combination of its input,
followed by a non-linearity. As a non-linearity we used the
hyperbolic tangent function (tanh).

2) Cross channel feature extracting layer:
a) Cyclic Permutation Network: The cyclic permutation

network (Fig. 5) is designed to learn cross-sensor features
invariant to a cyclic permutation of the eight recordings.
Depending on its phase, a given wheel can generate a set of
possible recordings, which is approximately stable by cyclic
permutation of the eight recordings. This network architecture
serves the purpose to encode this characteristic of cyclic
invariance. The network works in the following way:

1) The Cyclic Permutation Network sits on top of the Mono
channel feature extracting layers. It takes as input the
set of high level features of each channel computed
independently by the weight shared CNN (represented
as a dashed red box right of the signal in Fig. 5).

2) The network then distributes the set of 8 feature vectors vi
(the colored vertical bars in Fig. 5) across 8 permutation
channels (the stack of colored horizontal bars in Fig. 5),
one for each possible cyclic permutation of the feature
vectors. Each permutation channel concatenates the fea-
ture vectors following the order of its specific cyclic
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Figure 5: Structure of the cyclic permutation network that
automatically learns cyclic shift invariant features. The red
boxes on the left represent the weight shared CNN, the
coloured bars designate features learned by the CNN, the stack
of colored bars are permutations of the feature vectors, the blue
dots the class log-likelihoods per permutation and the green
box the final class probabilities.

permutation. Note the distinction between “channels” and
“permutation channels”, as the former refers to a specific
sensor recording, while the latter refers to a permutation
of the input channels, and contains the high level features
of all initial channels.

3) Afterwards, the concatenated vector within each permu-
tation channel is fed into a sequence of fully connected
layers that extracts cross channel features and outputs
the classification probability for the respective cyclic
permutation (The blue circles in Fig. 5).

4) Finally, the multiple log-likelihoods (one for each permu-
tation channel) are combined by returning the maximal
log-likelihood for the defect class and the minimal log-
likelihood for the non-defective class (The green dashed
box in Fig. 5).

Formally, given a set of 8 feature vectors, (vi)1≤i≤8, for a
wheel the cyclic permutation network computes the probability
of defect PD as:

PD = max
p∈P

f(vp(1)‖ . . . ‖vp(8)), (4)

where P is the set of all possible cyclic permutations of the
numbers [1, 8], f(·) is the function performed by the fully
connected layers and ‖ is the concatenation operator.

b) Defect Detection Network for Flat Spots: For tasks
like flat spot detection, it is not necessary to learn complex
cross channel features. Since a flat spot is a discrete defect
and usually manifests itself only in one sensor reading, the
Multiple Instance Learning (MIL) setting [26] is appropriate.
In this setting a wheel is considered defective when at least
one of the sensor readings is predicted defective. The Defect
Detection Network encodes this idea by reducing the cross

  

MinMax Layer
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Max
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Normal

P
Defect

Weight-shared convolutional networks

Input from 8 sensors

Figure 6: Structure of the MIL defect detection network for
flat spots. The network consists of one CNN per measurement
with weights shared across the networks. The defect likelihood
of the whole wheel is given by the maximum defect likelihood
across sensors.

channel feature to the indicator function of whether a defect
has been detected in one of the channels:

1) It takes as input the set of classification probabilities
of each channel computed independently by the Mono
channel feature extracting layer.

2) It combines the multiple log-likelihoods by returning
the maximal log-likelihood for the defect class and the
minimal log-likelihood for the non-defective class.

Given a set of s log-likelihoods for binary classification
from s sensors x = (PD

i , P
N
i )1≤i≤s, where PD

i is the
likelihood for defect and PN

i for non-defect from sensor i.
Since PN

i = 1− PD
i and 0 ≤ PD

i ≤ 1:

MIL(x) = (min
i

(1− PD
i ),max

i
(PD

i )). (5)

In Fig. 6 we depict the structure of the DNN that we use
to train a model for the detection of flat spots.

We call the last layer MIL-Layer. It makes sure that if one
measurement of the wheel captures the defect, the probability
of the wheel having a defect is high. If defects are not “seen”
by any sensor this probability will be low. Moreover, when
training with defective wheels, only the error of the channel
with the highest defect probability is backpropagated, thus
preventing the Mono channel feature extracting layer to try
to learn features for defective signals on signals that show no
defect.

The MIL setting was already used for the SVM based MIL
flat spot classifier in Krummenacher, Ong, and Buhmann [27].

C. Top Layer Features learned by the DNN

In this section we look at the features learned by the DNN
and compare the filters learned by the network on the 1-
dimensional or 2-dimensional time series representation. The
results in this section were obtained by training on data set 2
(SectionVI-C) and defect type flat spot.
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(a) (b)

Figure 7: Top layer filters (a) and features (b) learned by the
1-dimensional defect detection network for flat spots for a
measurement of a defective (right) and non-defective (left)
wheel.

(a) (b) (c)

Figure 8: Example of a top layer filter (a) and corresponding
features of the signal of a non-defective (b) and defective (flat
spot) (c) wheel learned on 2D representations.

Examples of top-layer filters learned by the DNN directly on
the 1-dimensional time series, as well as the features extracted
by them are shown in Fig. 7. We can observe that the network
has been trained to detect a short quick oscillation in the time
series. The extracted features on the defective input clearly
shows the successful training of the model in detecting defect
regions.

Fig. 8 shows the top layer filters learned by the DNN
on the 2-dimensional representation of the time series, and
their respective extracted features on a defective and non-
defective wheel. In general, the filters learned on the 2D
representation encode high gradients in intensity, qualitatively
presenting clear white/black delimitation. This suggests that
the model focuses on 2D shape recognition rather than 1D
pattern recognition as seen in filters learned on the time series
directly.

V. CLASSIFICATION OF WHEEL DEFECTS

Detection and classification of wheel defects amounts to
infer from a vertical force measurement x of a wheel if a
wheel is defective or not. Mathematically, a function f(·)
either encode the binary information, that a defect is present or
absent, or its defect class when we can differentiate the defect
category. To achieve this goal we use sets of measurements

of wheels to train decision functions for certain defect types
and for non-defective wheels. We then use this training set of
measurements and labels (the type of defect) to automatically
find a function that is expected to predict the defects of wheels
not seen during training accurately.

A. Support Vector Machine
One of the most popular models to find such a function

are Support Vector Machines (SVM) [28]. A SVM finds a
linear function parameterized by the vector w that maximally
separates the two classes during training. It achieves this
separation by maximizing the margin between the points of
the two classes in feature space, or equivalently by minimizing
the regularized empirical risk

R̂(w) =

[
1

n

n∑
i=1

max(0, 1− yi(w>xi + b))

]
+λ ‖w‖2 , (6)

where we minimize the empirical risk over the parameters
(w, b), that encode the hyperplane separating the two classes.
yi ∈ (−1,+1) is the label (class membership) of the ith

example in the training set, xi denotes the feature vector of
the ith measurements and max(0, 1 − z) is the hinge loss.
Measurements of a new wheel x can now be classified with
the following decision rule:

y := sgn(w>x + b). (7)

This decision rule (7) expresses its data dependence only
by a scalar product between weights w and the feature vector
x. Therefore, we can model non-linear decision functions
by replacing the scalar product with a kernel. A convenient
choice is a Gaussian radial basis kernel function of the
form k(xi,xj) = exp(−γ ‖xi − xj‖2) on the feature vectors
xi,xj . We can now express the minimization problem above
(Equation 6) in the dual and employ the kernel trick to learn
parameters αi and get the new classification rule

y = sgn

(
n∑

i=1

αiyik(xi,x) + b

)
. (8)

To determine the optimal parameters for regularization λ
and scale γ we maximize accuracy on cross-validation folds.

B. Classification with DNN
If we replace the hinge loss function in Equation (6)

in the previous section with the logistic loss function
log
(
1 + exp(−yiw>x)

)
we get regularized logistic regres-

sion. This optimization problem has the advantage that opti-
mization algorithms estimate probabilities of the class likeli-
hoods in addition to the binary labels. Using the softmax func-
tion instead of the logistic loss this benefit can be generalized
to an arbitrary number of classes. We will use these probability
estimates through a SoftMax-layer in our DNN to combine the
output of multiple classifiers for different measurements of the
same wheel.

For a given input and C classes, its log-likelihood for
belonging to class i equals

p(v|i) = log

(
exp(vi)∑C
j=1 exp(vj)

)
, (9)
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where (vi)1≤i≤C are the top-layer features of the network.
The soft-max function above is not only used for DNNs but

also in many multiclass classification methods, for instance
for logistic regression or in dynamical system estimation with
multiple model adaptive estimation (MMAE) [29, 30]

Unlike the previous section, where the classification func-
tion f(·) was modeled as a linear function in a Hilbert space,
that takes a fixed representation of the measurements, DNNs
model this function as a hierarchical structure (layers) of linear
combinations and activation functions (non-linearities) directly
on the time series of the measurement (Section IV).

VI. DATA SETS AND MODELS

Two data sets from different sources are assembled to
evaluate the performance of different methods for wheel defect
detection and classification and to train various classifiers. For
both data sets the signals that we use to predict a wheel defect
are measured by the wheel load checkpoint (Section II-A). The
annotations or labels that provide the information about the
defectiveness and defect class of a wheel are collected from
different sources. These data sets contain information about
different types of defects as described in the following. We
also describe what models and features we will use for the
respective data sets in this section.

A. Models and Features

On the first data set we compare the Wavelet-SVM with
benchmark flat spot prediction methods. We show that it
greatly outperforms prior art based on thresholding the dynam-
ical coefficient (Eq. 10 below) and also on multiple instance
learning with dynamic time warping.

The second data set serves to demonstrate that the Wavelet-
SVM can accurately classify all three defect types. We also
compare the performance of the deep learning models on
different time series representations by showing that the cyclic
permutation network outperforms the simpler neural networks
and also the Wavelet-SVM for non-roundness. For flat spots,
the neural network with features learned on the 2D time series
representation also outperforms the Wavelet-SVM.

We use different models and features for different defect
classes, as this allows us to model network structure and
feature construction adaptively to the effects the defects have
on the measurements. Thus the problem differs from standard
multi-class classification where one model predicts a vector of
class probabilities over all classes. Instead we are looking at
independent binary classification tasks per defect class, where
the task is to distinguish between one defect type and non-
defective. This enables clear comparison between the different
models.

As there are no known methods to predict non-roundness
or shelling we compare to baseline methods on a data set with
flat spots (data set 1). To evaluate our Wavelet-SVM on non-
roundness and shelling as well we use data set 2 to estimate
classification performance on all three defect classes. We have
proposed two different DNNs for defect detection in Sec. IV-B:
the cyclic permutation network (cyclic DNN) and the MIL-
DNN. We use the cyclic DNN to predict non-roundness as

this is a non-discrete defect type with large-scale effects. We
take the maximum probability of defectiveness over multiple
inputs. As the region of the wheel that rolls over the first
sensor is arbitrary we want to be able to be invariant to a
specific way of shifting the sensors. Thanks to the symmetric
way and the distances at which the sensors are installed we can
look at cyclic shifts of the concatenated signal of all sensors to
simulate different scenarios. The DNN trained to learn these
cyclic shift invariant features is described in Section IV-B2a.
The MIL-DNN is used to predict flat spot on data set 2 as
the multiple instance learning setting lends itself nicely to this
defect type as explained in Sec. IV-B2b.

B. Data Set 1: Calibration Run

To acquire a first training data set for flat spots, two wheels
on different wagons were artificially damaged. The wagons
were then added to a calibration train that was run over
different measurement sites with different velocities and from
both directions to calibrate the wheel load check points. This
resulted in 1600 measurements, 50% of which are from a
wheel with a flat spot.

We also consider another method to detect flat spots in
this data set, that is not based on machine learning. It is a
conservative threshold on the dynamic coefficient: a general
measure of spread within one time series. For each sensor this
coefficient is given by

dBW (x) =
max(x)

x̄
, (10)

where max and x̄ refer to the maximum and average value of
a sequence of measurements x, respectively.

C. Data Set 2: Reprofile Events

To generate data for training and testing a classifier that
can predict additional types of wheel defects, we aggregated
the time and date of reprofile events and linked them to
railway wagons. We used two sources for these events: the
protocols of repair workshops of freight trains and the regular
maintenance measurements of passenger trains. These were
annotated with a defect class by an expert before re-profiling
the defective wheels. We then categorized measurements of the
wheel load checkpoints of the same wagons around the date
of re-profiling. Measurements up to a week before re-profiling
were considered defective (according to the class label given
by the expert), while measurements up to a week after re-
profiling were considered defect free. Using this procedure we
were able to obtain a large data set of annotated measurements
from wheels of different defect classes over the span of
multiple years. 1836 measurements are evaluated for flat spot
detection, where 588 cases are classified as defective. For
shelling, we received 6070 measurements, with 2678 being
defective. For the non-roundness defect class, 688 cases out
of 920 measurements are defective.

VII. EXPERIMENTAL RESULTS

For performance evaluation of the methods we compute
three metrics: accuracy, precision and recall. Whereas accuracy



9

Table I: Test set performance on data set 1.

Method Accuracy (%) Precision (%) Recall (%)

Wavelet-SVM (ours) 92 94 93
eMIL 70 - -
Dynamic coeff. 60 100 22

Table II: Test set performance of the Wavelet-SVM on data
set 2.

Defect Accuracy (%) Precision (%) Recall (%)

Flat spot 87 ± 3 89 ± 4 86 ± 6
Shelling 92 ± 2 92 ± 3 93 ± 3
Non-roundness 87 ± 6 87 ± 10 89 ± 4

gives the total fraction of correctly classified wheels, precision
measures the fraction of correctly predicted defects out of all
predicted defects and recall the fraction of correctly predicted
defects out of all defects [31].

A. Model Selection and Evaluation

For all the experiments in this section the performance
shown is computed on a test set that was not used for training
or model/parameter selection. To make the evaluation robust
against chance we repeat each experiment multiple times on
new random train/test splits and report average and standard
deviation over these repetitions. For data set 1 we only report
the average as the standard deviation was not reported for the
benchmark method. For data set 1 50% of the data is hold
out for testing, for data set 2 20%. For the Wavelet-SVM the
average performance is computed over 10 repetitions, for the
DNNs over three repetitions. Using less experiments for the
DNNs is due to computational reasons and justified by the low
standard deviation over repetitions in all experiments <= 2%.
For the Wavelet-SVM three-fold cross-validation is performed
on the training set to find the optimal hyper-parameters of
the SVM and the Gaussian rbf kernel with grid-search on an
exponentially spaced grid. For the DNN 10% of the training
set were set aside as a validation set to benchmark performance
online and decide on when to stop training.

As the class proportions for data set 2 are not balanced
(c.f. Sec VII-C) training and evaluating the classifiers directly
on this data would lead to bias and higher classification
probability for the over-represented class. It would also make
judging accuracy and comparing the methods and data sets
hard, as the baseline for random chance would not be 50%.
Therefore as a first step in all experiments we re-balance the
class proportions of the data sets by randomly over-sampling
the smaller class through sampling with replacement. While
balanced data sets are useful for comparing methods and data
sets, in a real-world setting the true proportion of the classes
is important and mistakes for different types of error might
have different cost. Therefore we recommend to give class
probability estimates for each class when implementing such
a system and then adapting a threshold for raising an alarm
iteratively based on the test performance of the system.

Table III: Test set performance of the deep models on flat spots
in data set 2.

Model Accuracy (%) Precision (%) Recall (%)

Deep 1D 88 ± 1 96 ± 2 79 ± 3
Deep 2D 89 ± 1 93 ± 2 85 ± 2
Deep GAF 87 ± 2 91 ± 1 81 ± 5
Wavelet-SVM 87 ± 3 87 ± 2 86 ± 5

Table IV: Test set performance of the deep models on non-
roundness in data set 2.

Model Accuracy (%) Precision (%) Recall (%)

Deep MIL 81 ± 1 89 ± 3 71 ± 3
Deep Concat 81 ± 2 82 ± 2 78 ± 3
Deep Cyclic 88 ± 1 93 ± 1 82 ± 1
Wavelet-SVM 84 ± 9 80 ± 13 95 ± 3

B. Data Set 1

In a study prior to this publication [27], this data set was
used to empirically demonstrate the effectiveness of a new
algorithm for MIL [26]. Krummenacher, Ong, and Buhmann
[27] beat state-of-the art MIL algorithms on this data set and
get a classification accuracy of 70% with ellipsoidal multiple
instance learning (eMIL). In this study features based on the
Global Alignment (GA) kernel for time-series [32, 33] were
used.

Using the features described in Section III with a SVM
(Section V) we were able to improve accuracy to 92% (Ta-
ble I).

With the current operational threshold of θ = 3 on the
maximal dynamic coefficient (Eq. 10) an accuracy of 60%
is achieved. This is relatively low, as with random guessing
already 50% accuracy could be achieved. It is thus important
to note that the precision of this method is perfect with 100%
of reported wheels being defective. So even though the method
misses defective wheels it never raises a false alarm.

C. Data Set 2 - SVM

Equipped with our general method of constructing features
from multiple wheel vertical force measurements (Section III)
and learning a classifier from them (Section V) we are now
ready to predict other types of wheel defects as well. We also
evaluate the DNN based method (Section IV) in this section.

The SVM classifier (Section V) are trained on the labels
obtained by this method for the defect types flat spot, shelling
and non-roundness.

In Table II the performance on the reserved test set is
reported for each defect type including standard deviation over
the permutations. The performance on shelling is the best out
of the three defect types. This observation can be explained
by the fact that the training set for this defect type was by far
the largest, so we were able to train a classifier with higher
accuracy. This defect type also affects the wheel globally, so
it is harder to miss for the sensors than a flat spot. To improve
the performance on flat spot and non-roundness we trained
custom deep neural networks and give the results in the next
section.
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For the defect type non-roundness, the load normalized
features based on the load observed by individual sensors
(c.f. Section III) substantially contributed to an increase in
accuracy. This effect can be explained by the observation that
wheel non-roundness errors do not cause a large variation
on the within measurement time series since they are a non-
discrete type of wheel defects. They do introduce variations
between the different measurements per wheel on the other
hand and so features based on averages per measurement
sequence are important. We will improve the classification
performance for flat spot and non-roundness in the next section
by using a custom deep neural network (DNN) that is cyclic-
shift invariant for classification of these defect types.

One complication of this data set arises from the lack of
knowledge if the wagon passes the wheel load checkpoint
with the same orientation as the wheels were annotated in
the workshop. This lack of information leads to uncertain
labels for the class of defective wheels, as not all wheels
on a wagon necessarily share a defect. For the class of non-
defective wheels this uncertainty does not pose a problem,
since all wheels of a wagon are re-profiled and therefore are
non-defective in our data set. We deal with this problem by
adding both possible orientations of each wagon to the data set
for the defective class of wheels. This augmentation of the data
set introduces additional noise to the learning problem during
training as non-defective wheels might be labeled defective.
Nonetheless, we are able to train classifiers with high accuracy
for all three types of defects (flat spot, non-roundness, shelling)
based on data generated from this source. Since during testing
the same uncertainty exists and actually non-defective wheels
might have a defect class assigned the error rate of the
classifier appears to be over-reported . Therefore the numbers
reported in Table II and in the next section are a lower bound
on the performance of the classifier.

D. Data Set 2 - Deep Learning

Using the same data set as in the previous section we
evaluate the deep learning method (Section IV) on the two
defect types flat spot and non-roundness. To simplify the
experiments we do not include additional features like speed,
measurement site or template fit, but only consider the wheel
vertical force measurements from the WLC sensors. Therefore,
the performance of the SVM is slightly worse compared to the
previous section.

To compute the 2D image of the time series we proceeded as
following: first, the recording from each of the 8 channels have
been preprocessed via PAA [24], with bin number N = 156.
The GAF encoding as well as the 2D graph were computed
for each channels (we took the following parameters for the
2D graph: Vmin = −4, Vmax = 6 as the window captures
more than 99.9% of all the values, and r = Vmax−Vmin

N =
10
N to generate square pictures of size N × N ). Finally, the
picture size was further reduced by averaging every 2×2 non-
overlapping pixels for computational reasons, resulting in 8
channels of size 78×78 for both GAF and 2D graph encoding.

To prevent overfitting to the training set and to enable the
model to explore a larger parameter space, we augmented the

data by adding Gaussian noise and by randomly shifting and
re-scaling the time series before applying image transforma-
tions.

We applied dropout regularization [34] on all the fully
connected layers. To further improve generalization, we added
an additional `2 weight regularization penalty term in the
cost function (“weight decay”) to encourage smooth solutions
by favouring small weights. We have employed stochastic
gradient descent with Nesterov Momentum [35] to accelerate
convergence. The learning rate was set to decay inversely
proportional to the number of epochs.

1) Flat Spots: In Table III we compare the performance of
the different DNN models and the Wavelet-SVM. The only
deep model that is able to out-perform the accuracy of the
Wavelet-SVM is based on the 2D image of the time series.
All of the deep models have smaller standard deviation and
higher precision.

2) Non-roundness: In Table IV we compare the perfor-
mance of the cyclic DNN with the DNN used for flat spot
prediction (Deep MIL), a DNN that is trained on the concate-
nation of all the sensors (Deep Concat) and the Wavelet-SVM.
Remember that the MIL-DNN used for flat spot prediction is
trained by looking at the time series of each sensor individually
and computing the loss on the sensor with highest probability
of observing the defect. The performance of the different
methods on the test set shows that MIL is an inadequate model
for this type of defect since a wheel with a non-roundness
defect can not be reliably identified on the basis of only one
sensor measurement. This non-local behavior is in contrast to
the challenge of predicting flat spot. Concatenating the sensors
as is and not looking at the possible cyclic permutations
resulted in training set accuracy similar to the cyclic shift
network, but performance on the test set is significantly worse
(Table IV). Intuitively ignoring the permutations leads to over-
fitting as the measurements in the test set might be shifted
arbitrarily.

In comparison with the Wavelet-SVM the cyclic DNN
shows higher accuracy and precision and reduced variance.
Unlike the DNN for flat spot we only trained the cyclic DNN
for non-roundness directly on the 1D time series, as the in-
crease in parameters due to the concatenation of measurements
of the sensors prohibited efficient training of the model on the
2D representation.

VIII. CONCLUSION

We have presented two machine learning methods for de-
fect detection on railway train wheels. The methods analyse
multiple time series of the vertical force of a wheel under op-
erational speed and output if a wheel has a defect or not. Both
methods are trained automatically on measurements gathered
from defective and non-defective wheels. The first method is
based on novel general wavelet features for time series. The
second method employs deep convolutional neural networks
to automatically learn features from the time series directly or
from a 2-dimensional representation. We design cyclic shift
invariant artificial neural networks for the detection of wheel
flats and non-round wheels that model the relationship between
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the measurements inherent to these defects. To evaluate our
methods we collect two data sets from different sources and
demonstrate improved performance for predicting flat spot,
shelling and non-roundness.

The methods that were developed for this work are cur-
rently being implemented as part of the SBB wayside train
monitoring system. To improve the quality of the training
and test data RFID tags will be deployed to enable perfect
association between defect labels and measurements. Further
future work consists of integrating external features into the
deep learning models, optimizing for precision and predicting
severity scores for the defects. For the prediction of severity
scores we obtained promising preliminary results on regressing
the flat spot length using support vector regression [36] and
the wavelet features.
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