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ABSTRACT
Motivation: Understanding the occurrence and regulation of
alternative splicing (AS) is a key task towards explaining the
regulatory processes that shape the complex transcriptomes of
higher eukaryotes. With the advent of high-throughput sequencing
of RNA (RNA-Seq), the diversity of AS transcripts could be measured
at an unprecedented depth. Although the catalog of known AS events
has grown ever since, novel transcripts are commonly observed when
working with less well annotated organisms, in the context of disease,
or within large populations. Whereas an identification of complete
transcripts is technically challenging and computationally expensive,
focusing on single splicing events as a proxy for transcriptome
characteristics is fruitful and sufficient for a wide range of analyses.
Results: We present SplAdder, an alternative splicing toolbox,
that takes RNA-Seq alignments and an annotation file as input to
i) augment the annotation based on RNA-Seq evidence, ii) identify
alternative splicing events present in the augmented annotation
graph, iii) quantify and confirm these events based on the RNA-
Seq data, and iv) test for significant quantitative differences between
samples. Thereby, our main focus lies on performance, accuracy and
usability.
Availability: Source code and documentation are available
for download at http://github.com/ratschlab/spladder.
Example data, introductory information and a small tutorial are
accessible via http://bioweb.me/spladder.
Contact: andre.kahles@ratschlab.org, gunnar.ratsch@ratschlab.org

1 INTRODUCTION
Alternative splicing (AS) is an mRNA processing mechanism that
cuts and re-joins maturing mRNA in a highly regulated manner,
thereby increasing transcriptome complexity. Depending on the
organism, up to 95% of expressed genes are transcribed into
multiple transcript variants (Pan et al., 2008; Wang et al., 2008),
where various transcripts with differing exon composition can arise
from the same gene locus. (Throughout this text, we will use the
term transcript to identify a variant of a gene that was generated
through transcriptional processing.) Although these transcripts
might never coexist at the same time and place, each one of them
can be essential for cell differentiation, development or play an
important role within signaling processes (Kornblihtt et al., 2013).
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Thus, the two major challenges in computational transcriptome
analysis are complexity and completeness. In SplAdder, we
leverage evidence from RNA-Seq data to compute a more complete
representation of the splicing diversity within a sample and tackle
the complexity with a reduction to alternative splicing events
instead of full transcripts. We provide open source implementations
for SplAdder in MATLAB and Python that contain all features
described below and produce the same results. However, future
development will focus on the Python implementation for reasons
of accessibility. All inputs follow the standardized formats for
alignments and annotation such as BAM and GFF. For complete
examples, use cases and information regarding the user interface, we
provide a supplementary website. User documentation is available
in the wiki section of the source code repository.
In Section 2 we will give a brief overview on related approaches that
also focus on the analysis and quantification of alternative splicing
based on RNA-Seq data. Our main focus will be on methods that are
able to characterize alternative splicing events. In the subsequent
Section 3, we give an outline of the SplAdder methodology and
the algorithmic details of its main compute phases. To show
how SplAdder compares to other strategies for RNA-Seq based
alternative splicing analysis, we have compiled a set of different
evaluations and comparisons to existing methods. Our experimental
design will be described in Section 4 and the main results are
discussed in Section 5. Lastly, Section 6 summarizes this work.

2 RELATED WORK
Prior to the advent of high throughput RNA-Seq, methods
based on expressed sequence tags (ESTs) were developed to
elucidate the complex patterns of alternative splicing in higher
organisms (Modrek and Lee, 2002). Although designed for a much
lower data throughput, the algorithmic ideas presented for ESTs
have had a strong influence to the field in the following years. One
central idea is the representation of splicing variation at a gene
locus as a graph that encodes exon segments as nodes and the
intron segments as connecting edges (Heber et al., 2002; Eichner
et al., 2011; Kianianmomeni et al., 2014). Similar to SplAdder,
numerous tools are based on such splicing graph representations;
however, none of the existing approaches combines all aspects of
the SplAdder workflow: the augmentation of existing annotation
information, the detection and quantification of alternative splicing
events, differential testing of events between two given sets of
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samples and detailed visualization of the splicing variation. There
exist several approaches that cover at least a subset of the steps in
the SplAdder pipeline. The most notable ones are JuncBase (Brooks
et al., 2011), rMATS (Shen et al., 2014) and SpliceGrapher (Rogers
et al., 2012). JuncBase utilizes third party prediction tools such as
Cufflinks (Trapnell et al., 2010) to allow for the detection of novel
exon nodes in the splicing graph. It then extracts and quantifies
splicing events of the most common AS types and reports them
in a custom format. Further, JuncBase provides basic differential
analyses and basic visualizations of the test results. However, the
pipeline consists of 10 different steps, including building a Cufflinks
output based database, which is quite laborious to generate, has
a long running-time and is thus not ideal for larger scale studies.
SpliceGrapher directly integrates information from RNA-Seq or
EST data into a splicing graph and can display splicing events
in the graph visualizations. Unfortunately, it does not provide an
easy method to explicitly generate and quantify alternative splicing
events and does not allow for differential analysis. rMATs focuses
on the differential analysis of splicing between RNA-Seq samples.
It can detect the most common AS events from either RNA-Seq
alignments or from a set of reads by applying a third party mapping
algorithm. Based on the RNA-Seq evidence, it will also fill in
some missing information to call events not present in the provided
annotation but has a limited capacity to do so.

Other methods, such as Scripture (Guttman et al., 2010),
Cufflinks (Trapnell et al., 2010) or MISO (Katz et al., 2010) also use
graphs internally and allow for novel splice variants based on RNA-
Seq evidence but focus on the prediction of full transcripts instead of
single events. These tools aim to solve a much harder problem and
thereby miss potential local variability for AS studies. These tools
are also computationally more expensive, limiting their applicability
in the context of thousands of samples. Another popular tool that
is focused on the extraction of alternative splicing events from
a given annotated locus is the Astalavista toolbox (Foissac and
Sammeth, 2007). Although many splicing events are covered in
the detection phase, the tool relies on a complete annotation as
input and does not provide any quantification values for the events
However, the authors introduce a logical representation of splice
events (the splicing code) that we will utilize later on. The software
SpliceTrap (Wu et al., 2011) is able to generate quantification
values for the most common AS types, but recognizes much fewer
transcripts than Astalavista. For both tools no novel splice variants
are considered.

In our evaluation on simulated data, we will show that
SplAdder is more accurate in detecting novel events and shows
better performance in differential analysis than any of the tested
competitors. We have chosen to compare SplAdder against
JuncBase, rMATS and SpliceGrapher as these methods are closest
to the presented SplAdder pipeline. We discuss further details
regarding the comparisons in Section 4 and Suppl. Section D.

3 APPROACH
The SplAdder algorithm consists of multiple steps that convert a given
annotation into a splicing graph, enrich that graph with splicing evidence
from RNA-Seq samples, identify splicing events from the augmented graph
and use the given RNA-Seq data to quantify the single events (Figure 1).
Optionally, the quantifications can then be used for differential analysis.

We find this distinction important, as differential analysis between samples
is only one of many possible applications of AS event phenotypes. Other
examples may include generating of sample specific splicing profiles or
using AS phenotypes in genome-wide association studies.

3.1 Preliminaries

Here, we will introduce our notation and make definitions that will be used
throughout the following descriptions of the algorithm.

Coordinates All positions used in the following descriptions are in a
genomic coordinate system. We begin by defining the genome G as a string
of consecutive positions G = g1g2 . . . gn. When addressing any range x

within these positions, e.g., to define a gene x, we describe this as the pair
of the first and the last position of x : (g

x,start, g
x,end). When addressing a

specific entity x

i

, we will write (g
xi,start, g

xi,end). For simplicity, we ignore
chromosomes and assume the genome to be one continuous string.

Representation of Genes as Transcript Graphs A given gene annotation can
be represented as a set of linear directed graphs. Assume gene G as given,
that has k different transcripts j1, . . . , j

k

2 JG , where JG is the set of all
transcripts of gene G. As we consider each gene G independently, we will
omit the index G wherever possible in order to keep the notation uncluttered.
Each transcript consists of a set of exons that are connected by introns. Each
exon can be uniquely identified by its start and end. We thus represent all
exons as coordinate pairs of their genomic start and end position:

v = (start, end) = (g
v,start, g

v,end) 2 N2
,

where g

v,start and g

v,end are the first and last position of exon v in genomic
coordinates, respectively. Although further coordinate information like
chromosome and strand are used in the program implementation, we will
limit this description to an identification by start and end for simplicity.
The exons of each transcript j

i

can then be represented as a node set
V

i

:= {v
i,1, . . . , vi,mi} with 1  i  k and m

i

as the number of exons
in transcript j

i

. As transcripts have a direction (the exons within a transcript
follow a strict order), we require, that the index of the nodes reflects the
order of the exons in the transcript. As no two exons in a transcript overlap
by definition, this order is implied by g

v,start and g

v,end. We then define the
edge set of transcript j

i

as

E

i

:=
[

1s<mi

{(v
i,s

, v

i,s+1) | vi,s, vi,s+1 2 V

i

} ⇢ V

i

⇥ V

i

with 1  i  k. The pair (V
i

, E

i

) forms the directed transcript graph of
transcript j

i

.

Definition of Splicing Graphs We define the set of exons occurring in any

transcript j

i

as V . As the single exons are uniquely identified by their
coordinates, we can write V :=

S

k

i=1 Vi

. Hence, we define the set of all
edges as

E :=
k

[

i=1

E

i

⇢ V ⇥ V.

Note, that only already existing edges are merged, preserving the preexisting
order of nodes. The pair G = (V,E) is a directed acyclic graph and is called
the splicing graph representation of a gene. Figure S-2 illustrates how a set
of five transcripts is collapsed into a splicing graph. The key concept is, that
when multiple transcripts contain the same exon, this will be represented by
a single node in the splicing graph.

We define the in-degree and the out-degree of a node as the number of its
incoming and outgoing edges, respectively. We further define a node to be
start-terminal, if its in-degree is zero and end-terminal if its out-degree is
zero. Each transcript can now be represented as a path through the splicing
graph, beginning at a start-terminal node and ending at an end-terminal node.

Note, that although the splicing graph representation resolves many
redundancies and efficiently stores large numbers of different but mostly
overlapping transcripts, this comes at the cost of information loss. Long
range dependencies between single exons are not preserved. An example
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Fig. 1: SplAdder Analysis Flowchart The main steps of the SplAdder workflow consist of (1) integrating annotation information and
RNA-Seq data, (2) generating an augmented splicing graph from the integrated data, (3) extraction of splicing events from that graph, (4)
quantifying the extracted events, and optionally (5) the differential analysis between samples and producing visualizations.

of this is provided in Figure S-2. Although exon T2E1/T3E1 exclusively
occurs in transcripts that end in exon T2E3/T3E3, this relationship is lost
in the graph, where E2 can connect to both E6 and E7. Our approach is not
severely affected by this limitation as we only extract local information about
alternative exon- or intron-usage.

Definition of Segment Graphs Following the splicing graph definition, two
or more nodes in the graph may overlap. Thus, when collecting expression
information for each node from a given alignment, the same genomic
positions may be queried multiple times. To overcome this inefficiency,
we use the concept of breaking down each node into non-overlapping exon
segments, similarly used in (Reyes et al., 2012; Behr et al., 2013).

The same principle that is applied when collapsing different transcripts
that share the same exons into a graph structure can also be applied to
collapse exon segments that are shared by several nodes of the splicing
graph. Following this idea, we divide each exon into non-overlapping
segments. Analogous to an exon, a segment is uniquely identified by its
genomic coordinate pair and the same order as on exons can be applied:
s = (g

s,start, g
s,end). We say an exon v

i

is composed from segments s

i,q

through s

i,r

, if v
i

= s

i,q

� s

i,r

, with q < r and where · � · denotes the
concatenation of segment positions. Thus, the set of all segments can be
defined as

S =
[

vi2V

(s
i,q

, . . . , s

i,r

| s
i,q

� s

i,r

= v

i

).

To explicitly define the set of all segments, first we define the set VS of all
node-starts in V and the set VT of all node ends in V . The set of all segments
S can then be defined as

S =
[

gs,start,gs,end2VTS

{(g
s,start, g

s,end) | 9v 2 V :

g

v,start  g

s,start < g

s,end  g

v,end},

where VST = VS [ VT. The computation of S from V is straightforward.
Let P be a sorted array containing all genomic positions that are either start
or end positions of an exon in V . We denote the i-th element of the array
as P [i]. Let L

S

and L

E

be two binary label-arrays with the same length
as P , where L

S

[i] is 1 if P [i] is start of an exon in V and 0 otherwise.
Correspondingly, L

E

[i] is 1 if P [i] is the end of an exon in V and 0
otherwise. Let further C

S

and C

E

be two arrays with the same length as P ,
where C

S

[i] =
P

i

j=1 LS

[i] and C

E

=
P

i

j=1 LE

[i] are the cumulative
starts and ends up to position i. We can then determine the set of all segments

as

S =

|P |�1
[

i=1

{(P [i], P [i+ 1]) | C
S

[i] > C

E

[i]} .

Similar to the definition of the edges for the splicing graph, we define

T =
[

su,sw2S

{(s
u

, s

w

) |9v
i

2 V, s

r

2 S : v
i

= (g
sr,start, g

su,end) and

9v
j

2 V, s

t

2 S : v
j

= (g
sw,start, g

st,end) and

(v
i

, v

j

) 2 E}

to be the set of segment pairs that are connected by an intron. We then denote
the pair R = (S, T ) to be the segment graph of a gene. For practical reasons,
we store an additional matrix that relates each node in the splicing graph
to the segments it is composed of. Supplemental Figure S-5 illustrates the
relationship between splicing graph and segment graph.

We will use the splicing graph representation to incorporate new
information based on RNA-Seq evidence as well as for the extraction of
alternative splicing events. We will use the segment graph representation for
event quantification, as this is computationally much more efficient.

3.2 Construction of an Augmented Splicing Graph

As a preprocessing step, the input annotation is transformed into the initial
splicing graph G according to the definitions above, thereby collapsing
exons shared by multiple transcripts into single nodes of the graph. In the
following, we describe how G is transformed into an augmented graph Ĝ

using information from RNA-Seq data, thereby introducing new nodes and
edges. This is an integral part of the SplAdder workflow that enables the
discovery of novel splicing variation based on RNA-Seq data.

The augmentation of G is a four-step algorithm:

1. build initial graph
2. add novel cassette exons
3. add novel intron retentions
4. while novel edges can be added

4.1. insert novel intron edges

When a newly added node shares one boundary with an existing node, the
existing edges are inherited by the new node. Following, we will provide a
detailed explanation for each step.

Given an RNA-Seq sample and a gene G = (gG,start, gG,end), we extract
all intron junctions from the alignment that overlap G and show sufficient
alignment support. Whether an intron junction is sufficiently well supported
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is based on a set of given confidence criteria (cf. Supplemental Table C) We
define the list of RNA-Seq intron junctions R as

R = {(g
i

, g

j

) | gG,start  i < j  gG,end},

where (g
i

, g

j

) describes the intron starting at g
i

and ending at g
j

. Further,
let v = (g

v,start, g
v,end), with v 2 V , be an existing node in the splicing

graph. The augmentation process will transform the existing splicing graph
G = (V,E) into an augmented graph Ĝ = (V̂ , Ê). We initialize Ĝ with G.

Adding Novel Cassette Exons In the first augmentation step, new cassette
exon structures are added to the splicing graph. For this, the algorithm
iterates over all non-overlapping pairs of R. For each pair (g

i1 , gj1 ) and
(g

i2 , gj2 ), two conditions need to be fulfilled. Briefly, both intron ends need
to be attached to existing exons and the cassette exon must not already exist.
Formally, we check for the following conditions:

Intron ends 9v
i

2 V̂ : g
vi,end = g

i1 � 1

and 9v
j

2 V̂ : g
vj ,start = g

j2 + 1 and v

i

< v

j

New exon 6 9v
h

2 V̂ : g
vh,start = g

j1 and g

vh,end = g

i2 .

If both conditions are met, a new node v
n

= (g
j1 +1, g

i2 � 1) is added
to the node set V̂ and two new edges (v

i

, v

n

) and (v
n

, v

j

) are added to Ê.
Figure S-1, Panel A, schematically describes the addition of a cassette exon.
The criteria for adding a cassette exon are listed in Supplemental Table A.

Adding Novel Intron Retentions The second augmentation step adds intron
retention events to the splicing graph. For each edge (v

s

, v

t

) 2 Ê,
the algorithm decides whether there is enough evidence from the given
RNA-Seq sample for expression inside the intron, to consider the intron
sequence as retained. Again, heuristic confidence criteria are applied (cf.
Supplemental Table B). Briefly, the central criteria for adding a new intron
retention is the number of sufficiently covered positions within the intron as
well as the differences in mean coverage between intronic and exonic part
of that region. When sufficient evidence for a retention is found, a new node
v

n

= (v
s,start, v

t,end) is added to V̂ . The new node inherits all incoming
edges from v

s

and all outgoing edges from v

t

, thus we get the set of newly
added edges

E

n

=
n

(x, v
n

) | 8x : (x, v
s

) 2 Ê

o

[
n

(v
n

, x) | 8x : (v
t

, x) 2 Ê

o

.

Then, the set of edges is updated with Ê := Ê[E
n

. Supplemental Figure S-
1, Panel B, illustrates this case.

Insert Novel Intron Edges The last augmentation makes once more use of
the list of RNA-Seq supported intron junctions R generated during the first
step. Based on start and end position of the intron, we can test if any existing
nodes start or end at these positions, respectively. We have to distinguish
between four different basic cases: 1) neither start nor end coincide with
any existing node boundary, 2) the intron-start coincides with an existing
node end, 3) the intron end coincides with an existing node-start, 4) both the
intron-start coincides with an existing node end and the intron-end coincides
with an existing node-start. The four cases and their respective sub-cases are
illustrated in Panels C–H of Supplemental Figure S-1. Formal definitions
of the different cases are given in Supplemental Section A. As the addition
of novel intron edges depends on other possibly novel edges, this addition
step is repeated iteratively until no new edges can be added or a pre-defined
maximum number of iterations is reached.

Splicing Graph Pruning When multiple RNA-Seq samples are available,
SplAdder allows for an optional filtering step to reduce false positive edges.
All edges that are not supported by a given minimum number of RNA-Seq
samples will be pruned from the graph. Resulting orphan nodes that were
not present in the initial graph will be pruned as well.

3.3 Detect and Quantify Alternative Splicing Events

Based on the augmented splicing graph, we extract various classes of
AS events as subsets of connected nodes. SplAdder currently supports
the following event types: exon skip, intron retention, alternative 3’ and
alternative 5’ splice sites, multiple exon skips as well as mutually exclusive
exons. Note, that currently alternative transcript starts and ends are not
detected, as they are products of alternative transcriptional processing rather
then results of alternative splicing. Each event is then represented as a “mini-
gene” consisting of two splice variants minimally describing the alternatives
of the event. Overlapping events that share the same intron coordinates
and do only differ in the flanking exon ends are merged into a short
common representation. We refer to Supplemental Section B.1 for the formal
definitions of all classes of alternative events and a detailed description of the
extraction algorithms.

Finally, the event set identified from the splicing graph is quantified using
the given read alignment data. For each event, we report the mean coverage
of each exon and the number of spliced alignments supporting each intron.
Remember, that to speed up the quantification process, the read counting
is performed on the segment graph representation defined above. Thus, no
exon position needs to be quantified twice.

3.4 Differential Analysis

If the set of input samples can be separated into two or more groups
representing different conditions, the splice quantifications produced by
SplAdder can be subjected to differential testing. For this, SplAdder provides
two basic strategies. The first is to use the SplAdder output files that describe
event structure and quantification as input to other tools dedicated to analyze
differential expression, such as rDiff (Drewe et al., 2013) or DESeq (Reyes
et al., 2012). In previous studies, we have generally used the combination of
SplAdder and rDiff. In this case, the mini genes predicted by SplAdder are
re-quantified by rDiff and subjected to a test for differential relative transcript
usage.

The second strategy is to directly use the exon-intron junction counts
generated by SplAdder to apply a differential test. Briefly, we model junction
read counts with a negative binomial distribution and employ a generalized
linear model (GLM) framework for testing similar to (Love et al., 2014).
Similar to the previous approach, we use the sample replicate to estimate a
mean variance relationship to better account for overdispersion. Details of
the GLM based test is provided in Supplemental Section C. This strategy
can be run as part of the SplAdder pipeline. It directly accesses the event
quantifications and is computationally more efficient than the previous
hybrid approach. We have included both strategies into our evaluation
presented in Section 4.

3.5 Visualization

SplAdder also provides means for publication-ready visualization of
the RNA-seq read coverage of exon positions and of intron junctions.
Visualization allows for effective visual inspection of identified alternative
splicing events in light of primary read data. These visualizations provide
summarization of multiple samples as well as the comparison of different
groups of samples to highlight differential splicing over several replicate
groups or conditions. An example is provided in Supplemental Figure S-8.

4 EVALUATION AND APPLICATIONS
The SplAdder approach has been successfully applied in various
biological studies on Arabidopsis thaliana (Drechsel et al., 2013;
Gan et al., 2011) as well as in the context of large-scale cancer
projects with several thousand RNA-seq libraries (Weinstein et al.,
2013). Here, we have created several sets of simulated data
to evaluate SplAdder. Simulated data allows for an accurate
measure of performance and provides a ground truth for a fair
comparison against other existing methods. To allow as little bias
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Fig. 2: SplAdder Evaluation Results This matrix of bar charts summarizes the evaluation results for the comparison of rMATS,
SpliceGrapher, JuncBase and SplAdder (see legend) on different sets of simulated RNA-Seq read data. The metric shown here is the F-
Score, defined as the harmonic mean of precision and recall. (Plots of the same design with details on precision and recall are provided in
Supplemental Figures S-6 and S-7.) The rows of the plot matrix represent four different event types: a) exon skip, b) intron retention, c)
alternative 3’ splice site, and d) alternative 5’ splice site. The columns represent different read set sizes (5 million, 10 million, 20 million).
The four bar groups represent the different aligners used (from left to right: STAR 1-pass, STAR 2-pass, TopHat2, and the simulated ground
truth alignment).

as possible towards our own method, we used an external data
simulator (Griebel et al., 2012). In the following, we describe the
generated datasets and which evaluations were performed on them.

4.1 Data simulation

Detection of Novel Events We have used the FluxSimulator (Griebel
et al., 2012) toolbox to simulate RNA-Seq data sets of sizes
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5 million, 10 million and 20 million reads, covering 1, 000
genes randomly selected from the human GENCODE annotation
(v19) (Harrow et al., 2012) at various depths. For this analysis, we
put our main focus on the sensitive detection of novel alternative
splicing events. Thus, we pre-filtered the annotation to genes that
had at least two transcripts annotated.

All reads were aligned to the human reference genome using the
STAR (Dobin et al., 2013) as well as the TopHat2 (Kim et al.,
2013) aligners to show the applicability of our pipeline in a general
context. In both cases, we provided the full reference annotation
for index creation. TopHat2 implements a 2-pass alignment mode
per default. As this mode is optional for STAR, we ran it with
and without 2-pass mode to also get a better understanding of its
benefits. In addition to the alignment output, we also transformed
the simulated read alignments into BAM format and used it as
optimal input for the splice prediction tools, best reflecting ground
truth information.

To simulate a realistic scenario of detecting novel AS events
based on the provided RNA-Seq alignments only, we provided
only a reduced annotation to the tools performing the AS event
prediction. This reduced representation contains only the first
annotated transcript of a gene, where first is defined as first
occurrence in the complete annotation file.

For further details on data set creation and alignment, including
all command line parameter settings, we refer to Supplemental
Section D.

Differential Analysis The simulated data for the analysis of
differential testing was taken from the publication of rDiff (Drewe
et al., 2013), a tool for the detection of differentially expressed
transcripts from RNA-Seq data. The two datasets consist of 5,785
genes each, where half of the genes shows differential relative
transcript expression and the other half does not. The rDiff
publication gives further details on dataset generation.

4.2 Evaluation

Detection of Novel Events We used the Astalavista toolbox (Foissac
and Sammeth, 2007) to extract all annotated alternative splicing
events from the set of the randomly chosen 1,000 genes that we
used for data simulation. In contrast to the individual prediction
tasks, Astalavista had access to all annotated transcripts of a
gene and thus generated our ground truth set used for evaluation
later on. Astalavista generates output following a well-defined
nomenclature (Guigó Serra et al., 2008).

The single AS event predictors were run on the limited annotation
containing only the first transcript but had access to the RNA-
Seq data generated from the non-constrained annotation set. We
then converted the output of all other tools into the well defined
Astalavista format to allow for an easy comparison. For each of the
four AS event types (exon skip, intron retention, alternative 3’ splice
site and alternative 5’ splice site), we compared the predictions to
the ground truth set and computed precision, recall and F-score
metrics.

For this evaluation we considered JuncBase, rMATS, SpliceGrapher
and SplAdder.

Event Quantification Based on the read data simulated for the
detection of novel events, we were also able to evaluate the event
quantifications provided by the respective approaches. We based

all our analyses an percent spliced in (PSI) values, as they are an
accepted standard in the community. To generate the ground truth
PSI values, we took the relative expression of a transcript for each
gene as simulated by FluxSimulator. For each alternative splicing
event, we computed its PSI value as the ratio between the sum of
abundances of transcripts that represented the inclusion (e.g., not
skipping the exon in an exon skip event) over the sum of abundances
of all transcripts containing any of the event exons.

The so generated PSI values were then used as ground truth
for comparison of the predicted event quantifications. Only the
correctly detected events of each approach could be compared to
the ground truth quantifications. We used the Pearson correlation
coefficient as a measure of agreement between predicted and true
PSI values.

This evaluation was performed for JuncBase, rMATs and
SplAdder, as SpliceGrapher does not provide quantification values.

Differential Analysis The two test sets taken from (Drewe et al.,
2013) contain 5,785 genes each that either do (2,937) or do not
(2,938) show differential transcript usage. One dataset shows small
variability and the other large variability, which we will further refer
to as the small and large dataset, respectively. For each dataset,
we used the set of differential genes as ground truth and counted a
prediction as a true positive if the tool found at least one significant
AS event in that gene. From this we generated receiver operating
characteristic (ROC) curves with increasing significance cut-offs to
evaluate each tool’s performance.

For this analysis we compared only rMATS, JuncBase and
SplAdder, as SpliceGrapher does provide no differential testing
functionality.

5 RESULTS
5.1 Detection of Novel Events

Based on the three sets of simulated reads and the different
alignments performed on these read sets, we evaluated how well the
single prediction tools can reconstruct the splicing variability in the
sample from read alignments and limited annotation. In comparison
to the ground truth dataset generated by using Astalavista on the
non-restricted annotation file, we computed precision, recall and
F-Score metrics for four types of AS events (Figures 2, S-6 and S-7).

In general we find varying accuracies across the different event
types, with consistent patterns for all the tested tools. Intron
retentions are the most difficult to predict and exon skips the easiest.
rMATS was able to detect only two kinds of events on the data we
provided: exon skips and mutual exclusive exons. Only exon skips
were part of our evaluation. All event types that were not predicted
are shown as bars of height zero. We also would like to note, that the
simulated data resembles a polyA selected library. When working
with non-polyA selected, rRNA depleted libraries, performance will
likely be worse, as incompletely spliced transcripts will be amongst
the sequenced fragments, diluting the signal.

Across all event types, sample sizes and alignment methods
SplAdder shows the best performance compared to the other tools.
Although rMATS shows the highest precision on the predicted exon
skip events (0.965, cf. Supplemental Fig. S-6), it has a considerably
lower recall, thus affecting its overall performance. Further, it does
not predict any of the other assessed types. In contrast JuncBase
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shows a generally high recall but predicts many false positive events,
resulting in a low precision (cf. Supplemental Figs. S-6 and S-7).

A high read coverage has, in general, a positive effect on
prediction accuracy with better results for the samples covered at
a higher depth. However, we observed some instances where high
coverage results in lower performance, most likely due to more false
positives in the predicted set.

5.2 Event Quantification

For all events that were correctly predicted by each approach, we
compared the associated PSI value to the ground truth computed on
the simulated abundances.

In general, we observe good correlation between predicted
and true PSI values (cf. Supplemental Table F for a list of all
coefficients). Whereas SplAdder shows the highest correlation for
exon skip events, JuncBase has slightly higher accuracy for the other
event types, although closely followed by the SplAdder predictions.
As rMATS only predicted exon skip events, we could only include
this one event type into our comparison.

We did not observe large differences between correlation values
for the different aligners. Interestingly, a higher read depth led to
slightly lower quantification accuracies for all tools, even when
using the unaligned ground truth read data. We speculate that this
is an effect of the simulation tool. However, since we use the
reads only for a relative comparison of the different approaches, our
evaluation should not suffer from this.

5.3 Differential Analysis

SplAdder can be utilized in two different ways to compare
alternative splicing between samples. One approach is to use the
event mini-genes output by SplAdder as input to other tools for the
analysis of differential transcript usage. For our experiments, we use
rDiff and refer to this use case as SplAdder+rDiff. In addition, we
recently added a testing module to the SplAdder core pipeline that
uses a Generalized Linear Model (GLM), which we will refer to
as SplAdder+GLM in the following evaluations. Based on the two
artificial data sets described above, we find that SplAdder shows
very good performance overall when compared to other testing
approaches (Figure 3).

In the range of a low false positive rate, the performance of
SplAdder+rDiff is comparable to rMATS and slightly inferior to
SplAdder+GLM. This is consistent for both the small and large
variance dataset. JuncBase uses a t-test for assessing the different
groups of samples, which appears less well suited for testing read
count data, as it leads to relatively many false positives at high
confidence. The ROC curve shape directly reflects this.

5.4 Software and Usability

We have taken great care when implementing the SplAdder
approach. It has been developed in Matlab but was translated into
Python to improve accessibility. Both implementations provide the
same functionality, however we will continue future development in
Python only. When it comes to usability, SplAdder is a convenient
one-stop-shop that provides all analysis within a single pipeline.
With one simple command line call specifying the parameter set,
all subsequent steps are automatized. In addition, the pipeline can
be broken into single steps if necessary.

All other tested approaches required invocation of multiple
separate tool components and required custom scripting on the
user side to form a coherent pipeline. A single exception is
rMATS that is also well engineered and is quite usable. Most of
this also reflects in the running times of the implementations (cf.
Supplemental Table E). Whereas rMATS and SplAdder have quite
low running times, JuncBase and SpliceGrapher are considerably
slower. Especially the Cufflinks preprocessing for JuncBase is very
compute intense, with up to 30 hours for some evaluation samples
of the largest size. Thus, we have excluded this preprocessing time
from the running time table for JuncBase.

We believe that SplAdder’s improved usability is an important
feature that will enable comprehensive AS analysis on RNA-Seq
data for a wider audience than with previous methods. Our method
is particularly timely, given the ubiquitous precence of available
RNA-seq data, high interest in quantifying splicing phenotypes, and
scalability to process thousands of samples.

6 CONCLUSION
We present SplAdder, a novel approach for the large-scale
analysis of alternative splicing events based on RNA-Seq data.
We also provide a thoroughly engineered software implementation
that is straightforward to use and can be easily deployed in
a high performance computing framework. SplAdder has been
successfully applied to splicing analysis in various organisms,
compares favorably to various other state of the art methods showing
an overall high accuracy and can be readily applied to datasets of
thousands of samples. We are working to further improve SplAdder
to natively work with high performance compute clusters and
generate more interactive visualizations.
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MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in
multiple samples. Bioinformatics, 29(20), 2529–2538.

Brooks, A. N., Yang, L., Duff, M. O., Hansen, K. D., Park, J. W., Dudoit, S., Brenner,
S. E., and Graveley, B. R. (2011). Conservation of an RNA regulatory map between
Drosophila and mammals. Genome Research, 21(2), 193–202.

Dobin, A., Davis, C. a., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1), 15–21.

Drechsel, G., Kahles, A., Kesarwani, A. K., Stauffer, E., Behr, J., Drewe, P., Rätsch,
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The following paragraphs provide additional details to certain parts
that are only briefly summarized in the main text. The first section
provides further details on step four of the graph augmentation
process, describing which rules are applied to add novel intron
edges. The second section formally defines the splicing events
that can be extracted from a given splicing graph and gives a
verbal summary of the algorithms detecting each event type. The
subsequent sections describe the model used for differential analysis
between groups of samples and the procedures that we followed for
test data generation and evaluation. The final section gives a brief
overview on available visualizations of splicing patterns and event
quantifications.

A SPLICING GRAPH AUGMENTATION
The augmentation of the splicing graph comprises several iterative
steps, that are described in the main text. Here, we provide
additional details on step four of the algorithm, the addition of
novel intron edges into the graph.

In the following, we formally define all cases to insert new intron
edges into the graph.

1. To handle the first case we split it into three sub-cases:

a. If the intron (g
i

, g
j

) is fully contained within an existing
node (9v 2 ˆV : g

i

> g
v,start and g

j

< g
v,end), we can

insert a new intron into the node, thus creating two new
nodes v

n1 = (g
v,start, gi � 1) and v

n2 = (g
j

+ 1, g
v,end).

After adding v
n1 and v

n2 to ˆV , we update the edge set to

ˆE =

ˆE [ {(v
n1 , vn2)}

[
[

x2V̂

n

(x, v
n1) | (x, v) 2 ˆE

o

[
[

x2V̂

n

(v
n2 , x) | (v, x) 2 ˆE

o

b. If the intron (g
i

, g
j

) is fully contained within an existing
intron, we connect it to the two nodes v

s

and v
t

flanking
the containing intron, thus introducing two new nodes
v
n1 = (g

vs,start, gi � 1) and v
n2 = (g

j

+ 1, g
vt,end) into

ˆV . Again, the new nodes inherit their edges from v
s

and v
t

.

This results in the following update rule for the edge set:

ˆE =

ˆE [ {(v
n1 , vn2)}

[
[

x2V̂

n

(x, v
n1) | (x, vs) 2 ˆE

o

[
[

x2V̂

n

(v
n2 , x) | (vt, x) 2 ˆE

o

c. If one of the intron boundaries (g
i

, g
j

) is in close proximity
(we use  40 nt as a default threshold) to a terminal
node, this node is extended to a new node v

n1 and a new
terminal node v

n2 is added to the graph at the other side of
the intron. The length k of the new terminal exon is pre-
defined to be 200 nt. If the nearby node v is start-terminal,
v
n1 = (g

j

+1, g
v,end) and v

n2 = (g
i

� k� 1, g
i

� 1) and

ˆE =

ˆE [ {(v
n2 , vn1)} [

[

x2V̂

n

(v
n1 , x) | (v, x) 2 ˆE

o

.

If the nearby node v is end-terminal, v
n1 = (g

v,start, gi�1)

and v
n2 = (g

j

+ 1, g
j

+ k + 1) and

ˆE =

ˆE [ {(v
n1 , vn2)} [

[

x2V̂

n

(x, v
n1) | (x, v) 2 ˆE

o

.

2. The second case is similar in its handling to case 1c). If the
start of intron (g

i

, g
j

) coincides with the end of an existing
node v, we distinguish two sub-cases.

a. There exists a node v0 in close proximity to intron-end g
j

and we can add a new node v
n

= (g
j

+ 1, g
v

0
,end) and

update the edge set to

ˆE =

ˆE [ {(v, v
n

)} [
[

x2V̂

n

(v
n

, x) | (v0, x) 2 ˆE
o

.

b. There is no node in close proximity to intron-end g
j

, thus
we introduce a new end-terminal node v

n

= (g
j

+ 1, g
j

+

k + 1) and update the edge set to ˆE =

ˆE [ {(v, v
n

)}.

3. The third case is analogous to case 2). If the end of intron
(g

i

, g
j

) coincides with the start of an existing node v in the
graph, we again distinguish two sub-cases.

a. There exists a node v0 in close proximity to g
i

and we can
add a new node v

n

= (g
v

0
,start, gi�1) and update the edge

set to

ˆE =

ˆE [ {(v
n

, v)} [
[

x2V̂

n

(x, v
n

) | (x, v0) 2 ˆE
o

.
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coverage

split alignments

A  New cassette exon

coverage

B  New retained intron

split alignments

C  New intron

split alignments

D  Alternative splice sites on both intron ends

split alignments

E  New start-terminal node / New end-terminal node

split alignments

F  Alternative 3’ splice site / New end-terminal node

split alignments

G  Alternative 5’ splice site / New start terminal node

split alignments

H  New exon skip

Fig. S-1: Overview of the different classes of splicing graph augmentation. Panels A–H show all possibilities of how the splicing graph can
be augmented within SplAdder, based on evidence from RNA-Seq alignment data. In cases where no coverage evidence is shown, only
junction confirmations by split alignments are used.
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b. There is no node in close proximity to intron-start g
i

, thus
we introduce a new start-terminal node v

n

= (g
i

� k �
1, g

i

� 1) and update the edge set to ˆE =

ˆE [ {(v
n

, v)}.

4. The last case is the most straightforward to handle. If intron
(g

i

, g
j

) coincides with the end of node v and the start of node
v0, we augment the edge set ˆE =

ˆE [ {(v, v0)}, if the edge is
not already present in ˆE.

B EVENT EXTRACTION AND FILTERING
Here we provide further details on how the respective event types are
defined in the context of a splicing graph, how they can be extracted
and what filters exist to generate a high confidence set of events.

B.1 Extraction of Alternative Spicing Events
This section formally defines all alternative splicing events as sub-
graphs of the splicing graph. For each event type we also briefly
describe the algorithm to identify such sub-graphs.

Starting with the augmented splicing graph ˆG = (

ˆV , ˆE), we can
extract the AS event sub-graphs as follows:

Exon Skips are all sub-graphs

(V 0, E0
) = ({v

i

, v
j

, v
k

}, {(v
i

, v
j

), (v
j

, v
k

), (v
i

, v
k

)})

with V 0 ✓ ˆV and E0 ✓ ˆE.
For extraction, we iterate over the list of all sorted nodes and
check for each subset of size three, whether all three edges are
preset in the edge set. When all conditions are met, the exon set
is added to the exon skip event list.

Intron Retentions are all sub-graphs

(V 0, E0
) = ({v

i

, v
j

, v
k

}, {(v
i

, v
j

)})

with V 0 ✓ ˆV and E0 ✓ ˆE and g
vi,start = g

vk,start and g
vj ,end =

g
vk,end.

To extract intron retention events, we iterate over all edges of the
graph and check whether any node fully overlaps that edge. Only
the first overlapping node is stored.

Alternative 3’ Splice Sites are all sub-graphs

(V 0, E0
) = ({v

i

, v
j

, v
k

}, {(v
i

, v
j

), (v
i

, v
k

)})

with V 0 ✓ ˆV and E0 ✓ ˆE and g
vj ,end = g

vk,end. This
definition assumes the direction of transcription to be positive. For
transcripts from the negative strand, the definitions for alternative
3’ splice site and alternative 5’ splice site (below) need to be
switched.

To identify alternative 3’ splice site usage, we iterate through
all nodes of the graph of a gene on the plus (minus) strand and
check whether it is connected to two overlapping nodes that are
downstream (upstream) to it. Both nodes have to overlap by a
minimum number of positions. The current default is 11. When a
node is connected to more than two nodes, we will iterate over all
pairs of overlapping nodes and extract them as individual events.

Alternative 5’ Splice Sites are all sub-graphs

(V 0, E0
) = ({v

i

, v
j

, v
k

}, {(v
i

, v
k

), (v
j

, v
k

)})

with V 0 ✓ ˆV and E0 ✓ ˆE and g
vi,start = g

vj ,start. The different
strands are handled analogously to alternative 3’-splice sites.
Also the procedure to identify alternative 5’ splice site usage
is analog to the alternative 3’ case. The only difference is that
for genes on the plus (minus) strand the upstream (downstream)
nodes are considered as alternatives.

Multiple Exon Skips are all sub-graphs

(V 0, E0
) =({v

i

, v
j1 , . . . , vjs , vk}, {(vi, vj1), (vjs , vk), (vi, vk)}

[
s�1
[

l=1

{(v
jl , vjl+1)})

with V 0 ✓ ˆV and E0 ✓ ˆE.
To identify multiple exon skips, we use the upper triangular
matrix of the adjacency matrix of the splicing graph. (The
adjacency matrix for the splicing graph is a square binary matrix
A with one row/column per node. An entry A

i,j

is 1 when there
is an edge between nodes v

i

and v
j

and 0 otherwise). Through
iteratively multiplying this matrix to itself, we iterate through all
paths of increasing length. When we find a path where first and
last node are connected by an edge, we have found a multiple
exon skip. For all such pairs, we use the shortest path as inclusion
splice form.

Mutually Exclusive Exons are all sub-graphs

(V 0, E0
) = ({v

i

, v
j

, v
k

, v
l

}, {(v
i

, v
j

), (v
i

, v
k

), (v
j

, v
l

), (v
k

, v
l

)})

with V 0 ✓ ˆV and E0 ✓ ˆE and (v
j

, v
k

) /2 ˆE and v
j

6= v
k

.
For the identification of mutually exclusive exons, we iterate
through all nodes and check for each node, whether it has edges
to two downstream nodes that again themselves have edges to
a common downstream node. All such sets of 4 nodes will be
extracted as mutually exclusive exon events.

The same extraction rules would apply to extract alternative splicing
events from the not augmented graph G. A schematic overview of
the extraction process is provided in Figure S-3.

B.2 Event Filtering and Quantification
Alternative splicing events extracted from the graph are filtered at
several levels. To remove redundant events, all events are made
unique based on their inner event coordinates. The inner event
coordinates are defined as the start and end positions of all introns
of the event. If two events share the same inner coordinates, they
are replaced by a new event with the same inner coordinates but
adapted outer coordinates, minimizing the total length of the event.
An example for this is shown in Figure S-4. Events in Panel A
can be merged, whereas events in Panel B disagree in their inner
coordinates and remain separate.

Next, we use the RNA-Seq data to quantify each of the extracted
events. That is, for each intron we count the number of alignments
supporting it and compute the mean coverage c for each exon. For
reasons of computational efficiency, the quantification is performed
on the segment graph. As defined in the main text, each segment can
be uniquely identified by its genomic coordinates. Thus, we extract
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T1E1 T1E2 T1E3 T1E4

T2E1 T2E2 T2E3
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E5

T3E3
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T5E1 T5E2

A

B

Fig. S-2: Example case for the construction of a splicing graph. A: Set of five different transcripts of a gene. Exons are depicted as gray boxes
and introns as solid lines. Labels TiEj denote exon j in transcript i. B: Splicing graph representation of the same five transcripts. Exons
occurring in multiple transcripts are collapsed into a single exon in the graph (e.g., exons T1E3, T2E2, and T4E2 are collapsed into node
E4).
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Fig. S-3: Six different types of alternative splicing events are currently extracted from the splicing graph. The graph structure is given with
nodes as gray boxes and edges as solid/dashed lines. Solid/dark parts show the event of interest and light/dashed parts the remainder of
the graph structure. A: Exon skip, B: Multiple exon skip, C: Alternative 5’ splice site, D: Intron retention, E: Alternative 3’ splice site,
F: Mutually exclusive exons.

for each node its mean coverage and for each edge the number of
spliced alignments in the sample confirming this edge. As each exon
v
i

can be formed through a concatenation of segments s
q

� s
r

, we
can use the segment-lengths and their average coverage to compute

the average coverage of the exon:

c
vi =

P

r

j=q

(g
sj ,end � g

sj ,start + 1) · c
sj

P

r

j=q

(g
sj ,end � g

sj ,start + 1)

,

where s
q

� s
r

is the sequence of segments contained in node v
i

.
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In many applications, the splicing graphs can grow very complex,
containing alternative events that are only poorly supported by input
data. Thus, we use the quantifications to further filter the event set
and to only retain the most confident events. Each event type has
a different set of criteria it has to fulfill in order to become a valid
event. Complete listings of the respective criteria are provided in
Table D. To determine whether an event is valid, the algorithm
checks in which of the provided RNA-Seq samples which criteria
are met. An event is valid, if all criteria are met in at least one
sample. To create more stringently filtered sets of events, this
threshold can be increased. In general, most of the SplAdder
thresholds can be adapted, allowing for fine tuning towards a
respective task.

C DIFFERENTIAL TESTING OF AS-EVENTS
When multiple groups of samples are present, SplAdder can test for
significant differences in event expression between samples. Here,
we provide further details on our model used for testing.

We use a negative binomial distribution to approximate the
expression or splicing read count y for each splicing event i:

yi ⇠ NB(µi,i

),

where µi is the expected count and i is the estimated dispersion
across samples. We formulate the problem as a generalized linear
model (GLM) to estimate the µi given the observed counts yi.
In the GLM, the expected counts are decomposed into several
representative latent quantities �i. Under the null hypothesis, the
expected count µi is given as

log(µi

) = �i

0 + �i

expr + �i

� expr,

where �i

0 is the coefficient denoting the intercept; �i

expr is the
contribution of the observed count to the µi due to gene expression;
�i

� expr represents the distinction between two conditions at the
expression level. An additional term �i

� spl representing the splicing
difference (alternative splicing) is included in the alternative
hypothesis model as

log(µi

) = �i

0 + �i

expr + �i

� expr + �i

� spl.

In the GLM model, we test the existence of an alternative splicing
effect, taking into account expression as a confounding factor.
Firstly, the GLM system is used to obtain the µi from the estimated
�i. The i is estimated by maximizing the negative binomial
likelihood function given µi. Then, to reduce the uncertainty of i

estimated from the limited number of replicates, all i are regressed
to obtain a function f(µ) = �1/µ+ �0 to build a mean-dispersion
relationship (Reyes et al., 2012), where �1 and �0 are the two
parameters estimated during the regression. Thirdly, to finalize the
 for each event with µi, we adjust the  towards the f(µ) using
an empirical Bayes shrinkage strategy (Love et al., 2014), thereby
reducing the large variance of i. Lastly, the count data are fitted
into H0 and H1 separately and a �2-test is performed based on the
difference of deviances of the two GLM fits. We use the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) to correct for
multiple testing.

D EVALUATION AND TESTING
The SplAdder software has been developed in the context of
application and has been successfully applied in numerous projects
on Arabidopsis thaliana (Rühl et al., 2012; Drechsel et al., 2013;
Gan et al., 2011) as well as in large scale sequencing projects on
human RNA-Seq samples taken from cancer patients (Weinstein
et al., 2013). However, to allow for an accurate measure of
performance, we have used simulated data in this work to assess
the SplAdder results.

As described in the main text, we used the FluxSimulator (version
1.1.1-20121103021450) (Griebel et al., 2012) to simulate RNA-Seq
reads. For all three sample set sizes, we used the software with
its recommended settings. As previously described, the reads were
sampled from an annotation file containing 1,000 genes randomly
selected from a pre-filtered version of the Genocde (v19) annotation,
that only contained genes with multiple transcripts annotated. The
read simulations produced 100 nt paired-end reads when using the
following parameters:

EXPRESSION_X0 9500
EXPRESSION_K -0.6
TSS_MEAN 50
POLYA_SCALE 300
POLYA_SHAPE 2
FRAG_SUBSTRATE DNA
FRAG_METHOD NB
FRAG_NB_LAMBDA 500
FILTERING YES
SIZE_DISTRIBUTION N-300-50.txt
SIZE_SAMPLING AC
RTRANSCRIPTION YES
PCR_PROBABILITY 0.7
RT_PRIMER PDT
RT_LOSSLESS YES
RT_MIN 500
RT_MAX 5500
PAIRED_END YES
FASTA YES

Where N-300-50.txt contains a random sample, drawn from a
normal distribution with mean 300 and standard deviation 50. We
used the above settings for all three sample set sizes, only adapting
the total number of reads sampled.

These reads were aligned back to the hg19 reference genome
sequence using the TopHat2 (Kim et al., 2013) and STAR (Dobin
et al., 2013) aligners. STAR was run in default mode as well as a
2-pass alignment mode that detects novel splice junctions in a first
run and uses this information in a second alignment run.

TopHat2 was run with the following set of parameters (settings
not mentioned were left at their default):

--GTF <annotation_file>
--num-threads 8
--read-gap-length 3
--read-edit-dist 5
-o <out_directory>
-r 200
--min-intron-length 40
--max-intron-length 500000
--no-discordant
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A B

Fig. S-4: Example cases describing whether overlapping events can be merged or not. A: All inner event coordinates agree and the events can
be successfully merged. B: Both events have only one intron in common, whereas the other introns disagree. The events cannot be merged
and remain separate.
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Fig. S-5: Transformation of a splicing graph into a segment graph representation. Gray boxes represent nodes, black lines intron edges and
red lines non-intron edges that encode the relationship between segments and splicing graph nodes.

--microexon-search

STAR in its default mode was run with the following set of
parameters (settings not mentioned were left at their default):

--runThreadN 4
--genomeDir <genome_dir>
--genomeLoad NoSharedMemory
--readFilesIn <fastq_files>
--readFilesCommand zcat
--limitBAMsortRAM 70000000000
--outSAMtype BAM Unsorted
--outSAMstrandField intronMotif
--outSAMattributes NH HI NM MD AS XS
--outSAMheaderHD @HD VN:1.4
--outFilterMultimapNmax 50
--outFilterMultimapScoreRange 3
--outFilterScoreMinOverLread 0.7
--outFilterMatchNminOverLread 0.7

--outFilterMismatchNmax 10
--alignIntronMax 500000
--alignMatesGapMax 1000000
--sjdbScore 2

For STAR in 2-pass mode, we used the parameters as above and
added the following setting:

--twopassMode Basic

For sorting and indexing alignment files in BAM format we used
Samtools (Li et al., 2009) (version 0.1.20).

As described in the main text, to focus on the prediction of novel
splicing events, we removed all but the first transcript from each
gene and stored this as a backbone annotation, which was then
provided to SplAdder as well as the other tools along with the
simulated read sets.
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To assess how much complexity could be restored by the
various tools, we generated a ground truth dataset from the
unrestricted annotation file that was used for data simulation using
the Astalavista toolbox (Foissac and Sammeth, 2007).

We converted the output of all tools into the format described
in (Guigó Serra et al., 2008) using custom scripts. Based on the
overlap of the predicted events and the ground truth events, we
were able to identify true positives and false positives and thus
compute precision, recall and F-Score metrics. An overview of the
F-Score for all tools and data sets is presented in the main text. The
same overview for precision and recall is shown in supplemental
Figures S-6 and S-7, respectively.

SplAdder was run with the following set of parameters for all
analyses shown:

spladder.py
-b <bam_files>
-o <out_directory>
-a <annotation_gff>
-v y
-c 3
-M merge_graphs
-T y
-V n
-n 100
-P y
-p n
-t exon_skip,intron_retention,alt_3prime,

alt_5prime,mutex_exons,mult_exon_skip
--output_struc y

rMATS was run with the following set of parameters:

rmats.py
-b1 <bam_files>
-b2 <bam_files>
-gtf <annotation_gff>
-o <out_directory>
-t single
-len 100

The multiple steps of the JuncBase pipeline were run according
to the tutorial that is described in the MANUAL.pdf in the source
code of version 0.6. Parameters were chosen as suggested there.

The samfilter.py part ofSpliceGrapher was run with the
following parameters:

sam_filter.py
<bam_files>
<classif>
-f <genome.fasta>
-m <annotation.gff>
-v
-o <sam_filtered>

Where <classif> is the classifier for Homo Sapiens provided by
the developers of SpliceGrapher. Then the prediction step was run
with

predict_graphs.py
<sam_filtered>

-m <annotation_gff>
-v
-d <out_directory>

The running times of all tools shown in Supplementary Table E
were measured on compute nodes in a high performance computing
environment consisting of several multi-core machines, using 24
Intel R� Xeon R� CPU E5-2665 2.40GHz processors, each. All tools
were run on a dedicated processor in single-thread mode.

E VISUALIZATIONS
Being able to transform the large amount of splicing information
available for a gene locus into an easy to comprehend overview is
an important step towards a better understanding of altered splicing
mechanisms or to identify impaired RNA regulation. To aid with
this, SplAdder is able to produce a variety of diagnose and overview-
plots to summarize information at a specific locus or to given
an overview on the distributions of certain characteristics of all
identified events.

An illustrative example is the gene-locus overview plot that can
summarize the splicing graph of a gene and align it to the coverage
in a set of given samples, thereby highlighting coverage differences
(cf. Supplemental Figure S-8).

The list of available plotting routines is constantly extended.
Please refer to the user documentation and the SplAdder wiki for
a more comprehensive overview.
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Fig. S-6: Results of the precision evaluation based on simulated read data. All bar plots represent the measured precision values of the various
methods compared (rMATS (red), SpliceGrapher (light green), JuncBase (light blue) and SplAdder (purple)). Each row represent a different
AS event type (from top to bottom: intron retention, exon skip, alternative 3’ splice site and alternative 5’ splice site) and each column
represents a different sample size (from left to right: 5⇥10

6, 10⇥10

6, 20⇥10

6). The groups of bars in the single charts show the different
aligners used: (from left to right: STAR 1-pass, STAR 2-pass, TopHat, and the ground truth alignments).
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Fig. S-7: Results of the recall evaluation based on simulated read data. All bar plots represent the measured recall values of the various
methods compared (rMATS (red), SpliceGrapher (light green), JuncBase (light blue) and SplAdder (purple)). Each row represent a different
AS event type (from top to bottom: intron retention, exon skip, alternative 3’ splice site and alternative 5’ splice site) and each column
represents a different sample size (from left to right: 5⇥10

6, 10⇥10

6, 20⇥10

6). The groups of bars in the single charts show the different
aligners used: (from left to right: STAR 1-pass, STAR 2-pass, TopHat, and the ground truth alignments).
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Fig. S-8: Visualization of the splicing pattern occurring at a certain gene locus. The example shows real data taken from experiments on
Arabidopsis thaliana NMD impaired mutants published in (Drechsel et al., 2013). The upper track shows the splicing graph for the gene
AT1G21690 generated by SplAdder. The second track shows the annotated transcripts forms available in the TAIR10 annotation. Note, that
none of the annotated transcripts contains an additional exon identified by SplAdder. When looking at the coverage overview in the WT
(Sample 1, track 3) and double-knockdown (Sample 2, track 4) samples, a clear differential usage of that novel exon is apparent. Lastly, track
5 shows both samples in a comparative manner.

Criterion Value

min exon coverage 5
min fraction of covered positions in exon 0.9
min relative coverage difference to flanking exons 2.05

Table A. Settings for accepted cassette exons
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Fig. S-9: Scatter plots of predicted vs. actual PSI values for the SplAdder quantifications. Different panels show respective event types (from
left to right: alternative 5’ splice site, alternative 3’ splice site, intron retention and exon skip).

Criterion confidence level
0 1 2 3

min intron cov. 1 2 5 10
min fraction of cov. positions in intron 0.75 0.75 0.9 0.9
min intron cov. rel. to flanking exons 0.1 0.1 0.2 0.2
max intron cov. rel. to flanking exons 2 1.2 1.2 1.2

Table B. Settings for accepted intron retentions

Criterion Confidence Level
0 1 2 3

min segment length d0.1 · re d0.15 · re d0.2 · re d0.25 · re
max mismatches max{2, b0.03 · rc} max{1, b0.02 · rc} max{1, b0.01 · rc} 0
max intron length 350,000 350,000 350,000 350,000
min junction count 1 2 2 2

Table C. Settings for accepted introns, where r stands for the given read length.
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Exon Skips
Criterion Value

min relative coverage difference to flanking exons 0.05
min intron count confirming the skip 3
min intron count confirming the inclusion 3

Multiple Exon Skips
Criterion Value

min relative coverage difference to flanking exons (avg. on skipped) 0.05
min intron count confirming the skip 3
min average intron count confirming the inclusion 3

Intron Retentions
Criterion Value

min intron coverage 3
min intron coverage relative to flanking exons 0.05
min fraction of covered positions in the intron 0.75
min intron count confirming the intron 3

Alternative Splice Site Choice
Criterion Value

min intron count confirming the intron 3
min relative difference of differential exon part to flanking exon 0.05

Mutually Exclusive Exons
Criterion Value

min relative coverage difference to flanking exons (for exon 1) 0.05
min relative coverage difference to flanking exons (for exon 2) 0.05
min intron count confirming the inclusion (for exon 1) 2
min intron count confirming the inclusion (for exon 2) 2

Table D. Criteria to confirm the different alternative splicing events based on the evidence available in RNA-Seq alignments. Shown are the default values,
that can be adapted for fine tuning the confirmation process.

Sample Size SplAdder SpliceGrapher

STAR STAR-2P TopHat orig STAR STAR-2P TopHat orig
5M 481 497 415 512 4008 4115 2580 2478
10M 1237 825 700 904 5787 5804 2911 2895
20M 2399 1511 1253 1644 11396 12262 5908 4921

Sample Size JuncBase rMATS

STAR STAR-2P TopHat orig STAR STAR-2P TopHat orig
5 M 1182 1168 865 1082 344 344 252 270
10 M 2191 2205 1642 1945 529 521 470 502
20 M 4172 4243 2921 3570 1282 1328 916 954

Table E. Running times for all tools tested on simulated data sets.
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Sample Size 5000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.693 (495) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.686 (474) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.688 (497) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.699 (513) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.700 (882) 0.663 (191) 0.877 (303) 0.851 (179)
JuncBase STAR 2-pass 0.700 (883) 0.663 (191) 0.875 (302) 0.851 (179)
JuncBase TopHat2 0.757 (952) 0.677 (210) 0.870 (294) 0.894 (165)
JuncBase Original 0.763 (1021) 0.678 (215) 0.885 (294) 0.878 (184)

SplAdder STAR 1-pass 0.792 (1145) 0.573 (70) 0.846 (300) 0.844 (204)
SplAdder STAR 2-pass 0.791 (1131) 0.598 (68) 0.841 (290) 0.829 (204)
SplAdder TopHat2 0.792 (1163) 0.624 (74) 0.850 (307) 0.862 (207)
SplAdder Original 0.793 (1197) 0.586 (79) 0.849 (310) 0.860 (215)

Sample Size 10000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.687 (505) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.676 (483) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.685 (506) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.696 (518) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.717 (952) 0.661 (203) 0.856 (292) 0.867 (192)
JuncBase STAR 2-pass 0.718 (952) 0.661 (203) 0.856 (292) 0.867 (191)
JuncBase TopHat2 0.724 (1015) 0.697 (217) 0.854 (311) 0.867 (173)
JuncBase Original 0.738 (1142) 0.682 (224) 0.852 (295) 0.875 (187)

SplAdder STAR 1-pass 0.784 (1237) 0.566 (84) 0.829 (329) 0.839 (226)
SplAdder STAR 2-pass 0.785 (1225) 0.613 (85) 0.823 (320) 0.829 (224)
SplAdder TopHat2 0.781 (1248) 0.549 (86) 0.823 (328) 0.840 (226)
SplAdder Original 0.781 (1249) 0.580 (91) 0.826 (329) 0.839 (229)

Sample Size 20000000

Method Aligner Exon skip Intron retention Alternative 3’ Alternative 5’
rMATS STAR 1-pass 0.685 (506) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS STAR 2-pass 0.677 (481) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS TopHat2 0.688 (509) 0.000 (0) 0.000 (0) 0.000 (0)
rMATS Original 0.695 (518) 0.000 (0) 0.000 (0) 0.000 (0)

JuncBase STAR 1-pass 0.710 (964) 0.630 (212) 0.876 (310) 0.869 (202)
JuncBase STAR 2-pass 0.710 (965) 0.630 (212) 0.876 (310) 0.869 (202)
JuncBase TopHat2 0.745 (1048) 0.665 (223) 0.871 (298) 0.830 (182)
JuncBase Original 0.758 (1109) 0.665 (229) 0.879 (302) 0.865 (195)

SplAdder STAR 1-pass 0.780 (1256) 0.530 (84) 0.857 (329) 0.821 (225)
SplAdder STAR 2-pass 0.779 (1248) 0.547 (81) 0.855 (323) 0.832 (224)
SplAdder TopHat2 0.780 (1269) 0.521 (85) 0.842 (331) 0.823 (225)
SplAdder Original 0.779 (1261) 0.555 (90) 0.843 (332) 0.831 (225)

Table F. Pearson correlation coefficients for predicted vs. true PSI values for different event types and aligners. Values in parentheses are number of events
used for correlation. Only events predicted correctly by the respective approach were included for comparison of PSI values. rMATS only predicted exon skip
events, resulting in values of 0 for the other event types.
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