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Simultaneously solving multiple related estimation tasks is a problem known
as multi-task learning in the machine learning literature. A rather flexible
approach to multi-task learning consists in solving a regularization problem
where a positive semidefinite multi-task kernel is used to model joint relation-
ships between both inputs and tasks. Specifying an appropriate multi-task
kernel in advance is not always possible, therefore it is often desirable to esti-
mate one from the data. In this chapter, we overview a family of regularization
techniques called Output Kernel Learning (OKL), for learning a multi-task
kernel that can be decomposed as the product of a kernel on the inputs and
one on the task indices. The kernel on the task indices is optimized simultane-
ously with the predictive function by solving a joint two-level regularization
problem.
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1.1 Learning Multi-Task Kernels

Supervised multi-task learning consists in estimating multiple functions
fj : Xj ! Y from multiple datasets of input-output pairs

(xij , yij) 2 Xj ⇥ Y, j = 1, . . . ,m, i = 1, . . . , `j ,

where m is the number of tasks and `j is the number of data pairs for the j-th
task. In general, the input sets Xj and the output set Y can be arbitrary non-
empty sets. If the input sets Xj are the same for all the tasks, i.e. Xj = X , and
the power set Ym can be given a vector space structure, one can equivalently
think in terms of learning a single vector-valued function f : X ! Ym from
a dataset of pairs with incomplete output data. The key point in multi-task
learning is to exploit relationships between the di↵erent components fj in
order to improve performance with respect to solving each supervised learning
problem independently.

For a broad class of multi-task (or multi-output) learning problems, a suit-
able positive semidefinite multi-task kernel can be used to specify the joint
relationships between inputs and tasks [5]. The most general way to address
this problem is to specify a similarity function of the form K((x1, i), (x2, j))
defined for every pair of input data (x1, x2) and every pair of task indices (i, j).
In the context of a kernel-based regularization method, choosing a multi-task
kernel amounts to designing a suitable Reproducing Kernel Hilbert Space
(RKHS) of vector-valued functions, over which the function f whose com-
ponents are the di↵erent tasks fj is searched. See [13] for details about the
theory of RKHS of vector valued-functions.

Predictive performances of kernel-based regularization methods are highly
influenced by the choice of the kernel function. Such influence is especially
evident in the case of multi-task learning where, in addition to specifying input
similarities, it is crucial to correctly model inter-task relationships. Designing
the kernel allows to incorporate domain knowledge by properly constraining
the function class over which the solution is searched. Unfortunately, in many
problems the available knowledge is not su�cient to uniquely determine a good
kernel in advance, making it highly desirable to have data-driven automatic
selection tools. This need has motivated a fruitful research stream which has
led to the development of a variety of techniques for learning the kernel.

There is considerable flexibility in choosing the similarity function K, the
only constraint being positive semidefiniteness of the resulting kernel. How-
ever, such flexibility may also be a problem in practice, since choosing a good
multi-task kernel for a given problem may be di�cult. A very common way
to simplify such modeling is to utilize a multiplicative decomposition of the
form

K((x1, i), (x2, j)) = KX(x1, x2)KY (i, j),

where the input kernel KX is decoupled from the output kernel KY . The same



Output Kernel Learning Methods 5

structure can be equivalently represented in terms of a matrix-valued kernel

H(x1, x2) = KX(x1, x2) · L, (1.1)

where L is a positive semidefinite matrix with entries Lij = KY (i, j). Since
specifying the kernel function KY is completely equivalent to specifying the
matrix L, we will use the term output kernel to denote both of them, with a
slight abuse of terminology.

Even after imposing such simplified model, specifying the inter-task sim-
ilarities in advance is typically impractical. Indeed, it is often the case that
multiple learning tasks are known to be related, but no precise information
about the structure or the intensity of such relationships is available. Simply
fixing L to the identity, which amounts to share no information between the
tasks, is clearly suboptimal in most of the cases. On the other hand, wrongly
specifying the entries may lead to a severe performance degradation. It is
therefore clear that, whenever the task relationships are subject to uncer-
tainty, learning them from the data is the only meaningful way to proceed.

1.1.1 Multiple Kernel Learning

The most studied approach to automatic kernel selection, known as Mul-
tiple Kernel Learning (MKL), consists in learning a conic combination of N
basis kernels of the form

K =
NX

k=1

dkKk, dk � 0, k = 1, . . . , N.

Appealing properties of MKL methods include the ability to perform selection
of a subset of kernels via sparsity, and tractability of the associated optimiza-
tion problem, typically (re)formulated as a convex program. Although most
of the works on MKL focus on learning similarity measured between inputs,
the approach can be clearly also used to learn a multi-task kernel of the form

K((x1, i), (x2, j)) =
NX

k=1

dkK
k
X(x1, x2)K

k
Y (i, j),

which includes the possibility of optimizing the matrix L in (1.1) as a conic
combination of basis matrices, by simply choosing the input kernels Kk

X to
be equal. In principle, proper complexity control allows to combine an arbi-
trarily large, even infinite [1], number of kernels. However, computational and
memory constraints force the user to specify a relatively small dictionary of
basis kernels to be combined, which again calls for a certain amount of do-
main knowledge. Examples of works that employ a MKL approach to address
multi-output or multi-task learning problems include [17, 11, 16].



6 Sunil Template

1.1.2 Output Kernel Learning

A more direct approach to learn inter-task similarities from the data con-
sists in searching the output kernelKY over the whole cone of positive semidef-
inite kernels, by optimizing a suitable objective functional. Equivalently, the
corresponding matrix L can be searched over the cone of positive semidefinite
matrices.

This can be accomplished by solving a two-level regularization problem of
the form

min
L2S+

min
f2HL

0

@
mX

j=1

`jX

i=1

V (yij , fj(xij)) + �
�kfk2HL

+ ⌦(L)
�
1

A , (1.2)

where (xij , yij) are input-output data pairs for the j-th task, V is a suitable
loss function, HL is the RKHS of vector-valued functions associated with the
reproducing kernel (1.1), ⌦ is a suitable matrix regularizer, and S+ is the cone
of symmetric and positive semidefinite matrices. The regularization parameter
� > 0 should be properly selected in order to achieve a good trade-o↵ between
approximation of the training data and regularization. This can be achieved
by hold-out validation, cross-validation, or other methods. We call such an
approach Output Kernel Learning (OKL). By virtue of a suitable representer
theorem [13], the inner regularization problem in (1.2) can be shown to admit
solutions of the form

f̂k(x) =
mX

j=1

Lkj

0

@
`jX

i=1

cijKX(xij , x)

1

A , (1.3)

under mild hypothesis on V .
From the expression (1.3), we can clearly see that when L equals the iden-

tity, the external sum decouples and each optimal function f̂k only depends
on the corresponding dataset (independent single task-learning). On the other
hand, when all the entries of the matrix L are equal, all the functions f̂k are
the same (pooled single task-learning). Finally, whenever L di↵ers from the
identity, the datasets from multiple tasks get mixed together and contribute
to the estimates of other tasks.

1.1.2.1 Frobenius Norm Output Kernel Learning

A first OKL technique was introduced in [4] for the case where V is a
square loss function, ⌦ is the squared Frobenius norm, and the input data xij

are the same for all the output components fj , leading to a problem of the
form

min
L2S+

min
f2HL

 
X̀

i=1

(yi � fj(xi))
2 + �

�kfk2HL
+ kLk2F

�
!
, (1.4)

Such special structure of the objective functional allows to develop an e↵ective
block coordinate descent strategy where each step involves the solution of a
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Sylvester linear matrix equation. A simple and e↵ective computational scheme
to solve (1.4) is described in [4]. Regularizing with the squared Frobenius norm
ensures that the sub-problem with respect to L is well-posed. However, one
may want to encourage di↵erent types of structures for the output kernel
matrix, depending on the application.

1.1.2.2 Low-Rank Output Kernel Learning

When the output kernel is low-rank, the estimated vector-valued function
maps into a low-dimensional subspace. Encouraging such low-rank structure is
of interest in several problems. Along this line, [3, 2] introduce low-rank OKL,
a method to discover relevant low dimensional subspaces of the output space
by learning a low-rank kernel matrix. This method corresponds to regulariz-
ing the output kernel with a combination of the trace and a rank indicator
function, namely

⌦(L) = tr(L) + I(rank(L)  p).

For p = m, the hard-rank constraint disappears and ⌦ reduces to the trace,
which still encourages low-rank solutions. Setting p < m gives up convexity
of the regularizer but, on the other hand, allows to set a hard bound on the
rank of the output kernel, which can be useful for both computational and
interpretative reasons. The optimization problem associated with low-rank
OKL is the following:

min
L2S+

min
f2HL

0

@
mX

j=1

`jX

i=1

(yij � fj(xij))
2 + �

�kfk2HL
+ tr(L)

�
1

A , s.t. rank(L)  p.

(1.5)
The optimal output kernel matrix can be factorized as L = BBT , where
the horizontal dimension of B is equal to the rank parameter p. Problem
(1.5) exhibits several interesting properties and interpretations. Just as sparse
MKL with a square loss can be seen as a nonlinear generalization of (grouped)
Lasso, low-rank OKL is a natural kernel-based generalization of reduced-rank
regression, a popular multivariate technique in statistics [9]. When p = m
and the input kernel is linear, low-rank OKL reduces to multiple least squares
regression with nuclear norm regularization. Connections with reduced-rank
regression and nuclear norm regularization are analyzed in [3].

For problems where the inputs xij are the same for all the tasks, opti-
mization for low-rank OKL can be performed by means of a rather e↵ective
procedure that iteratively computes eigendecompositions, see Algorithm 1 in
[3]. Importantly, the size of the involved matrices such as B, the low rank
factor of L, can be controlled by selecting the parameter p. However, more
general multi-task learning problems where each task is sampled in corre-
spondence with di↵erent inputs require completely di↵erent methods. It turns
out that an e↵ective strategy to approach the problem consists in iteratively
applying inexact Preconditioned Conjugate Gradient (PCG) solvers to suit-
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able linear operator equations that arise from the optimality conditions. Such
linear operator equations are derived and analyzed in [2].

1.1.2.3 Sparse Output Kernel Learning

In many multitask learning problems it is known that some of the tasks
might be related while some others are independent, but it is unknown in
advance which of the tasks are related. In such cases, it may make sense trying
to encourage sparsity in the output kernel by means of suitable regularization.
For instance, by choosing an entry-wise `1 norm regularization ⌦(L) = kLk1,
one obtains the problem

min
L2S+

min
f2HL

0

@
mX

j=1

`jX

i=1

(yij � fj(xij))
2 + �

�kfk2HL
+ kLk1

�
1

A .

Encouraging a sparse output kernel may allow to automatically discover
clusters of related tasks. However, some of the tasks may be already known in
advance to be unrelated. Such information can be encoded by also enforcing
a hard constraint on the entries of the output kernel, for instance by means of
the regularizer ⌦(L) = kLk1 + I(PS(L) = 0), where I is a indicator function,
PS selects a subset S of the non-diagonal entries of L and projects them into
a vector, yielding the additional constraint

Lij = 0, 8(i, j) 2 S.

The subproblem with respect to L is a convex nondi↵erentiable problem, also
when hard sparsity constraints are present. E↵ective solvers for sparse output
kernel learning problems are currently under investigation.

1.2 Applications

Multi-task learning problems where it is important to estimate the rela-
tionships between tasks are ubiquitous. In this section, we provide examples
of such problems where OKL techniques have been applied successfully.

1.2.1 Collaborative Filtering And Preference Estimation

Estimating preferences of several users for a set of items is a typical in-
stance of multi-task learning problem where each task is the preference func-
tion of one of the users, and exploiting similarities between the tasks matters.
Preference estimation is a key problem addressed by collaborative filtering
systems and recommender systems, that find wide applicability on the web.
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In the context of collaborative filtering , techniques such as low-rank matrix
approximation are considered state of the art. In the following, we present
some results from a study based on the MovieLens datasets (see Table 1.1),
three popular collaborative filtering benchmarks containing collections of rat-
ings in the range {1, . . . , 5} assigned by several users to a set of movies, for
more details, see [2]. The study shows that, by exploiting additional informa-
tion about the inputs (movies), OKL techniques are superior to plain low-rank
matrix approximation.

TABLE 1.1: MovieLens datasets: total number of users, movies, and ratings.

Dataset Users Movies Ratings
MovieLens100K 943 1682 105

MovieLens1M 6040 3706 106

MovieLens10M 69878 10677 107

The results reported in Table 1.2 correspond to a setup where a random
test set is extracted, containing about the 50% of the ratings for each user, see
also [15, 10]. Results under di↵erent test settings are also available, see [2]. The
25% of the remaining training data are used as a validation set to tune the reg-
ularization parameter. Performance is evaluated according to the root mean
squared error (RMSE) on the test set. Regularized matrix factorization (RMF)
corresponds to choosing the input kernel equal to KX(x1, x2) = �K(x1, x2),
where �K denotes the Kronecker delta (non-zero only when the two argu-
ments are equal), so that no information other than the movie Id is exploited
to express the similarity between the movies. The pooled and independent
baselines correspond to choosing Lij = 1 and Lij = �K(i, j), respectively. The
last method employed is low-rank OKL with rank parameter p = 5 fixed a
priori for all three datasets, and input kernel designed as

K(x1, x2) = �K(xid
1 , xid

2 ) + exp (�dH(xg
1, x

g
2)) ,

by taking into account movie Ids xid
1 , xid

2 and meta-data about genre catego-
rization of the movies xg

1, x
g
2 available in all three datasets.

TABLE 1.2: MovieLens datasets: test RMSE for low-rank OKL, RMF,
pooled and independent single-task learning.

Dataset RMF Pooled Independent OKL
MovieLens100K 1.0300 1.0209 1.0445 0.9557
MovieLens1M 0.9023 0.9811 1.0297 0.8945
MovieLens10M 0.8627 0.9441 0.9721 0.8501
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1.2.2 Structure Discovery in Multiclass Classification
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FIGURE 1.1: Caltech 256: learned similarities between classes. Only a subset
of the classes is shown.

Multi-class classification problems can be also seen as particular instances
of multi-task learning where each real-valued task function fj corresponds to
a score for a given class. The training labels can be converted into sparse real
vectors of length equal to the number of classes, and only one component
di↵erent from zero. Employing a OKL method in this context allows not only
to train a multi-class classifier, but also to learn the similarities between the
classes.

As an example, Figure 1.1 shows a visualization of the entries of output
kernel matrix obtained by applying low-rank OKL to the popular Caltech 256
dataset [6, 7], containing images of several di↵erent categories of objects, in-
cluding buildings, animals, tools, etc. By using 30 training examples for each
class, the obtained classification accuracy on the test set (0.44) is close to
state of the art results. At the same time, the graph obtained by threshold-
ing the entries of the learned output kernel matrix with low absolute value,
reveals clusters of classes that are meaningful and agree with common sense.
Output kernel learning methods have been also applied in [8] to solve object
recognition problems.

1.2.3 Pharmacological problems

Multi-task learning problems are common in pharmacology, where data
from multiple subjects are available. Due to the scarcity of data for each
subject, it is often crucial to combine the information from di↵erent datasets
in order to obtain a good estimation performance. Such combination needs
to take into account the similarities between the subjects, while allowing for
enough flexibility to estimate personalized models for each of them. Output
kernel learning methods have been successfully applied to pharmacological
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FIGURE 1.2: Experiment on pharmacokinetic data [2]. Root Mean Squared
Error averaged over 100 random splits for the 27 subject profiles in correspon-
dence with di↵erent methods.

problems in [2], where two di↵erent problems are analyzed. Both problems
can be seen as multi-task regression problems or matrix completion problems
with side information.

The first problem consists in filling a matrix of drug concentration mea-
surements for 27 subjects in correspondence with 8 di↵erent time instants after
the drug administration, by having access to only 3 measurements per sub-
ject. Standard low-rank matrix completion techniques are not able to solve
this problem satisfactorily, since they ignore the available knowledge about
the temporal shape of the concentration curves. On the other hand, a OKL
method allows to easily incorporate such knowledge by designing a suitable in-
put kernel that takes into account temporal correlation, as done in [2]. Figure
1.2 reports boxplots over the 27 subjects of the root mean squared error, aver-
aged over 100 random selections of the three training measurements, showing
a clear advantage of the OKL methodology with respect to both pooled and
independent baselines, as well as a low-rank matrix completion technique that
does not use side information.

The second problem analyzed in [2] has to do with completing a matrix
of Hamilton Depression Rating Scale (HAMD) scores for 494 subjects in cor-
respondence with 7 subsequent weeks, for which only a subset of 2855 entries
is available [12]. Performance is evaluated by keeping 1012 properly selected
entries for test purposes. In order to automatically select the regularization
parameter �, a further splitting of the remaining data is performed to ob-
tain a validation set containing about 30% of the examples. Such splitting is
performed randomly and repeated 50 times. By employing a low-rank OKL
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approach with a simple linear spline input kernel, one can observe signifi-
cantly better results (Table 1.3) with respect to low-rank matrix completion
and standard baselines, see [2] for further details.

TABLE 1.3: Drug e�cacy assessment experiment [2]: best average RMSE
on test data (and their standard deviation over 50 splits)

Pooled Independent RMF OKL
6.86 (0.02) 6.72(0.16) 6.66(0.4) 5.37(0.2)

1.3 Concluding remarks and future directions

Learning output kernels via regularization is an e↵ective way to solve
multi-task learning problems where the relationships between the tasks are
uncertain or unknown. The OKL framework that we have discussed in this
chapter is rather general and can be further developed in various directions.
There are several practically meaningful constraints that could be imposed on
the output kernel: sparsity patterns, hierarchies, groupings, etc. E↵ective op-
timization techniques for more general (non-quadratic) loss functions are still
lacking and the use of a variety of matrix penalties for the output kernel ma-
trix is yet to be explored. Extensions to semi-supervised and online problems
are needed in order to broaden applicability of these techniques. Finally, some
hybrid methods that combine learning of, possibly multiple, input and output
kernels have been recently investigated [14] and are currently still under active
investigation.
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