
Learning output kernels with block coordinate descent

Francesco Dinuzzo fdinuzzo@tuebingen.mpg.de

Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Cheng Soon Ong chengsoon.ong@inf.ethz.ch

Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland

Peter Gehler pgehler@mpi-inf.mpg.de

Max Planck Institute for Informatics, 66123 Saarbrücken, Germany

Gianluigi Pillonetto giapi@dei.unipd.it

Department of Information Engineering, University of Padova, 35131 Padova, Italy

Abstract

We propose a method to learn simultane-
ously a vector-valued function and a kernel
between its components. The obtained ker-
nel can be used both to improve learning per-
formance and to reveal structures in the out-
put space which may be important in their
own right. Our method is based on the so-
lution of a suitable regularization problem
over a reproducing kernel Hilbert space of
vector-valued functions. Although the regu-
larized risk functional is non-convex, we show
that it is invex, implying that all local min-
imizers are global minimizers. We derive a
block-wise coordinate descent method that
efficiently exploits the structure of the objec-
tive functional. Then, we empirically demon-
strate that the proposed method can improve
classification accuracy. Finally, we provide
a visual interpretation of the learned kernel
matrix for some well known datasets.

1. Introduction

Classical learning tasks such as binary classification
and regression can be solved by synthesizing a real-
valued function from the data. More generally, prob-
lems such as multiple output regression, multitask
learning, multiclass and multilabel classification can
be addressed by first learning a vector-valued func-
tion, and then applying a suitable transformation to

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

the outputs. In this paper, we introduce a method that
simultaneously learns a vector-valued function and the
kernel between the components of the output vector.
The problem is formulated within the framework of
regularization in RKH spaces. We assume that the
matrix-valued kernel can be decomposed as the prod-
uct of a scalar kernel and a positive semidefinite kernel
matrix that represents the similarity between the out-
put components, a structure that has been considered
in a variety of works, (Evgeniou et al., 2005; Capon-
netto et al., 2008; Baldassarre et al., 2010).

In practice, an important issue is the choice of the ker-
nel matrix between the outputs. In some cases, one
may be able to fix it by using prior knowledge about
the relationship between the components. However,
such prior knowledge is not available in the vast ma-
jority of the applications, therefore it is important to
develop data-driven tools to choose the kernel auto-
matically. The learned kernel matrix can be also used
for visualization purposes, revealing interesting struc-
tures in the output space. For instance, when applying
the method to a multiclass classification problem, the
learned kernel matrix can be used to cluster the classes
into homogeneous groups. Previous works, such as
(Zien & Ong, 2007; Lampert & Blaschko, 2008), have
shown that learning convex combinations of kernels on
the output space can improve performance.

Our method searches over the whole cone of positive
semidefinite matrices. Although the resulting opti-
mization problem is non-convex, we prove that the ob-
jective is an invex function (Mishra & Giorgi, 2008),
namely it has the property that stationary points
are global minimizers. Then, we propose an efficient
block-wise coordinate descent algorithm to compute

Learning output kernels with block coordinate descent

an optimal solution. The algorithm alternates between
the solution of a so-called discrete time Sylvester equa-
tion and a quadratic optimization problem over the
cone of positive semidefinite matrices. Exploiting the
specific structure of the problem, we propose an effi-
cient solution for both steps.

The four contributions of this paper are as follows.
First, we introduce a new problem of learning simul-
taneously a vector-valued function and the similarity
between its components. Second, we show that our
non-convex objective is in fact invex, and hence local
minimizers are global minimizers. Third, we derive
an efficient block-wise coordinate descent algorithm to
solve our problem. Finally, we show empirical evidence
that our method can improve performances, and also
discover meaningful structures in the output space.

2. Spaces of vector-valued functions

We review some facts used to model learning tasks
such as multiple output regression, multiclass and mul-
tilabel classification. The key idea is to learn functions
with values in a vector space.

2.1. Reproducing Kernel Hilbert Spaces

We provide some background here on reproducing ker-
nel Hilbert spaces (RKHSs) of vector-valued functions,
i.e. where the outputs are vectors instead of scalars.
Let Y denote an Hilbert space with inner product
〈·, ·〉Y , and L(Y) the space of bounded linear operators
from Y into itself. The following definitions introduce
positive semidefinite Y-kernel and RKHS of Y-valued
functions, that extend the classical concepts of positive
semidefinite kernel and RKHS. See Micchelli & Pontil
(2005); Carmeli et al. (2006) for further details.
Definition 2.1 (Positive semidefinite Y-kernel). Let
X denote a non-empty set and Y an Hilbert space.
A symmetric function H : X × X → L(Y) is called
positive semidefinite Y-kernel on X if, for any finite
integer `, the following holds∑̀
i=1

∑̀
j=1

〈yi, H(xi, xj)yj〉Y ≥ 0, ∀(xi, yi) ∈ (X ,Y) .

We now introduce Hilbert spaces of vector-valued func-
tions that can be associated to positive semidefinite
Y-kernels.
Definition 2.2 (RKHS of Y-valued functions). A Re-
producing Kernel Hilbert Space (RKHS) of Y-valued
functions g : X → Y is an Hilbert space H such that,
for all x ∈ X , there exists Cx ∈ R such that

‖g(x)‖Y ≤ Cx‖g‖H, ∀g ∈ H.

It turns out that every RKHS of Y-valued functions H
can be associated with a unique positive semidefinite
Y-kernel H, called the reproducing kernel. Conversely,
given a positive semidefinite Y-kernel H on X , there
exists a unique RKHS of Y-valued functions defined
over X whose reproducing kernel is H. The standard
definition of positive semidefinite (scalar) kernel and
RKHS (of real-valued functions) can be recovered by
letting Y = R.

For the rest of the paper, we assume Y = Rm. In
such a case, L(Y) is just the space of square matrices
of order m. By fixing a basis {bi}i∈T for the output
space, where T = {1, . . . ,m}, one can uniquely define
an associated (scalar-valued) kernel R over X ×T such
that

〈bi, H(x1, x2)bj〉Y = R((x1, i), (x2, j)),

so that an Y-kernel can be seen as a function that maps
two inputs into the space of square matrices of orderm.
Similarly, by fixing any function g : X → Y, one can
uniquely define an associated function h : X × T → R
such that

g(x) =
∑
i∈T

h(x, i)bi.

Consequently, a space of Y-valued functions over X is
isomorphic to a standard space of scalar-valued func-
tions defined over the input set X × T . In conclusion,
by fixing a basis for the output space, the problem of
learning a vector-valued function can be equivalently
regarded as a problem of learning a scalar function de-
fined over an enlarged input set, a modeling approach
that is also used in the structured output learning set-
ting (Bakir et al., 2007).

2.2. Learning Tasks

As mentioned in the introduction, many learning tasks
can be solved by first learning a function taking val-
ues in Rm. We list here brief descriptions of some
commonly used models. First of all, in multiple out-
put regression, each component of the vector directly
corresponds to an output. For multiclass classifica-
tion, output data are modeled as binary vectors, with
+1 in the position corresponding to the class. By
interpreting the components of the learned vector-
valued function g as “confidence scores” for the differ-
ent classes, one can consider a classification rule of the
form ŷ(x) = arg maxi∈T gi(x). For binary multilabel
classification, outputs are vectors with ±1 at the dif-
ferent components. The final classification rule is given
by the component-wise application of a sign function:
ŷi(x) = sign(gi(x)).

Learning output kernels with block coordinate descent

3. Learning an output kernel

In this section, we introduce and study an optimization
problem that can be used to learn simultaneously a
vector-valued function and a kernel on the outputs.

3.1. Matrix notation

Let Sm++ ⊆ Sm+ ⊆Mm denote the open cone of positive
definite matrices, the closed cone of positive semidefi-
nite matrices, and the space of square matrices of or-
der m, respectively. For any A,B ∈ Mm, denote the
Frobenius inner product 〈A,B〉F := tr(ATB), and the
induced norm ‖A‖F :=

√
〈A,A〉F . We denote the

identity matrix as I and, for any matrix A, let AT de-
note its transpose, and A† its Moore-Penrose pseudo-
inverse. The Kronecker product is denoted by ⊗, and
the vectorization operator by vec(·). In particular, for
matrices A,B,C of suitable size, we use the identity
tr(ATBAC) = vec(A)T (CT ⊗B)vec(A).

3.2. Regularized risk

In the following, we assume Y = Rm. Let H denote
the RKHS of Y-valued functions g : X → Y associated
with the kernel H defined as

H = K · L,

where K is a positive semidefinite scalar kernel on
X that measures the similarity between inputs, and
L ∈ Sm+ is a symmetric positive semidefinite matrix
that encodes the relationships between the output’s
components.

Our method simultaneously learns a function g ∈ H
and the matrix L (output kernel) from a set of ` input-
output data pairs (xi, yi) ∈ X × Y. We adopt a reg-
ularization approach where a penalty on the function
g and on the output kernel matrix L is used to suit-
ably constrain the solution and make the problem well
posed:

min
L∈Sm

+

[
min
g∈H

(∑̀
i=1

‖g(xi)− yi‖22
2λ

+
‖g‖2H

2
+
‖L‖2F

2

)]
.

(1)
Note that the objective functional contains only one
regularization parameter. A second regularization pa-
rameter is not needed as it can be shown to be equiva-
lent to rescaling K. According to the representer the-
orem for vector-valued functions (Micchelli & Pontil,
2005), the inner minimization problem admits an op-
timal solution of the form

g∗(x) =
∑̀
i=1

H(x, xi)ci = L
∑̀
i=1

ciK(x, xi), (2)

L

0.2
0.4

0.6
0.8

1.0

C

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Q

2

1

0

1

2

3

L

0.2
0.4

0.6
0.8

1.0

C

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Q

2

1

0

1

2

3

Figure 1. The objective function for scalar K and L. Al-
though the level sets are non-convex, stationary points are
also global minimizers.

where ci ∈ Y (i = 1, . . . , `) are suitable vectors. Let
K ∈ S`+ be such that Kij = K(xi, xj), and Y,C ∈
R`×m such that

Y = (y1, . . . , y`)
T
, C = (c1, . . . , c`)

T
.

By plugging the expression (2) of g into the objective
functional of problem (1), we obtain

min
L∈Sm

+

min
C∈R`×m

Q (L,C) ,

where

Q (L,C) :=
‖Y −KCL‖2F

2λ
+
〈CTKC,L〉F

2
+
‖L‖2F

2
.

(3)
Observe that Q is strongly convex with respect to L
and convex with respect to C. However, Q is not
(quasi)-convex with respect to the pair (L,C). This
can be seen from Figure 1, by noticing that the level
sets of the objective functional in the two-dimensional
case (m = ` = 1) are non-convex. Nevertheless, we will
show in Theorem 3.3 that the objective has the prop-
erty that local minimizers are global minimizers. Fur-
thermore, we derive an efficient optimization method
in Section 4.

3.3. Invex functions

Recall that a function f defined over a convex set is
called quasiconvex if all its sublevel sets are convex.
Although the function Q defined in (3) is not quasi-
convex (and hence also not convex), it turns out that it
is a so-called invex function, so that stationary points
are also global minimizers. We now review some basic

Ong, Cheng Soon (Data61, Canberra City)

Learning output kernels with block coordinate descent

facts about invex functions. For more details, we refer
to (Mishra & Giorgi, 2008).

Definition 3.1 (Invex function). Let A denote an
open set. A differentiable function f : A → R is called
invex if there exists a function η : A × A → Rn such
that

f(x1)− f(x2) ≥ η(x1, x2)T∇f(x2), ∀x1, x2 ∈ A.

The definition of an invex function is a generaliza-
tion of the gradient inequality for differentiable convex
functions, which corresponds to η(x1, x2) = x1 − x2.
Remarkably, invex functions can be characterized as
follows (Craven & Glover, 1985; Ben-Israel & Mond,
1986).

Theorem 3.2. A differentiable function f : A → R is
invex if and only if every stationary point is a global
minimizer.

While differentiable convex functions are particular in-
stances of invex functions, the class of invex functions
is much larger. The class of quasi-convex functions
partially overlaps with the class of invex functions. For
instance, the function fQC(x) = x3 is quasi-convex but
not invex, while the function fI(x1, x2) = 1+x2

1−e−x
2
2

is invex but not quasi-convex. For these and other re-
lationships between invex functions and other classes
of functions, see (Mishra & Giorgi, 2008).

3.4. The objective is invex

With the definition of invex functions above, we can
now state the following result.

Theorem 3.3. Functional Q defined as in (3) is an
invex function over the open set Sm++ ×R`×m. In par-
ticular, local minimizers are also global minimizers.

Proof of Theorem 3.3. First of all, let

F (L,Z) =
‖Y − Z‖2F

2λ
+
‖L‖2F

2
+ h(L,Z),

where

h(L,Z) =
{
〈ZTK†Z,L−1〉F /2, Z = KCL
+∞, otherwise

and observe that, by the properties of the trace and
the pseudo-inverse, we have

Q(L,C) = F (L,KCL). (4)

Now, we show that F is jointly convex in L and Z.
Since the first two terms are quadratic an thus jointly

convex, we only need to prove convexity of h(L,Z).
Let

H = L⊗K, z = vec(Z), (5)

and observe that it suffices to prove convexity in the
effective domain of h, where

HH†z = z.

Now, we also have

〈ZTK†Z,L†〉F = zTH†z,

and it turns out that this last function is jointly convex
with respect to z and H. Indeed, by the generalized
Schur complement lemma (Albert, 1969), we have

zTH†z ≤ α ⇔
(

H z
zT α

)
∈ Sm+1

+ ,

so that the epigraph is convex. Since (H, z) is a linear
function of (L,Z), the functional is also convex with
respect to these variables. In conclusion, h and hence
F are jointly convex.

Now, let (L∗,C∗) denote a stationary point of Q where
L is positive definite, and set Z∗ = KC∗L∗. In view
of (4), it follows that

0 =
∂Q

∂L
(L∗,C∗) =

∂F

∂L
(L∗,Z∗) + CT

∗K
∂F

∂Z
(L∗,Z∗)

0 =
∂Q

∂C∗
(L∗,C∗) = K

∂F

∂Z∗
(L∗,Z∗)L∗

In particular, let

S :=
∂F

∂Z
(L∗,Z∗) = Y − λC∗ − Z∗,

and let U ∈ R`×m denote the matrix whose columns
are obtained by projecting the columns of S over the
nullspace of K. Then, letting

C̃ = C∗ −U/λ, Z̃ = KC̃L∗,

we have that (L∗, C̃) is still stationary for Q, and in
addition

Q(L∗,C∗) = Q(L∗, C̃) = F (L∗, Z̃).

Furthermore, the columns of
(
Y − λC̃− Z̃

)
belong to

the range of K, therefore we also have

0 =
∂F

∂Z
(L∗, Z̃) = Y − λC̃− Z̃.

As a consequence, it also follows

0 =
∂F

∂L
(L∗, Z̃).

Learning output kernels with block coordinate descent

In conclusion, the pair (L∗, Z̃) is a stationary point
for F and, since F is convex, also a global minimizer.
Hence, we have

Q(L∗,C∗) = F (L∗, Z̃) ≤ F (L,Z),

for any (L,Z), in particular for Z = KCL. In view of
(4), it follows that (L∗,C∗) is a global minimizer of Q.
Finally, it follows by Theorem 3.2 that Q is invex.

4. A block coordinate descent method

In the following, we derive a block-wise coordinate de-
scent technique (Algorithm 1) for minimizing the func-
tional of equation (3). The algorithm alternates be-
tween minimization with respect to L and minimiza-
tion with respect to C. The key computational steps
are in lines 3 and 6, which are derived in Section 4.1
and 4.2 respectively.

4.1. Sub-problem w.r.t. coefficient matrix C

From Equation (3) we see that for any fixed L, C is
optimal if and only if

0 =
∂Q (L,C)

∂C
= −K (Y − λC−KCL) L

λ
.

Hence, a sufficient condition for C to be optimal is

Y − λC−KCL = 0, (6)

a linear matrix equation called discrete-time Sylvester
equation (Sima, 1996). In principle, this can be rewrit-
ten and solved as a large linear system of equations of
the form

(L⊗K + λI)vec(C) = vec(Y).

However, this naive solution is not efficient for large
scale problems. Sylvester equations arise in control
theory, and there exist many efficient techniques that
take advantage of the structure. We use an algorithm
implemented in SLICOT 1.

4.2. Sub-problem w.r.t. output kernel L

For any fixed C, the problem with respect to L is a
strongly convex optimization problem in the cone of
symmetric positive semidefinite matrices. We derive
an update that maintains positive semidefiniteness and
can be computed by solving a linear system.

A key observation is the following: if C has been ob-
tained by solving the Sylvester equation (6), then the

1www.slicot.org

Algorithm 1 Block-wise coordinate descent
1: L,C,E,Z← 0
2: while ‖Z + λC−Y‖F ≥ δ do
3: C← Solution to KCL + λC = Y,
4: E← KC
5: P← 1

2ETC− L
6: Q← Solution to

(
ETE + λI

)
Q = P

7: L← L + λQ
8: Z← EL
9: end while

positive semidefinite constraint is never active in the
sub-problem with respect to L. Namely, we have that

arg min
L∈Sm

+

Q (L,C) = arg min
L∈Mm

Q (L,C) , (7)

since the solution of the problem on the right hand side
is automatically symmetric and positive semidefinite.
Lemma 4.1. Assume that C is a solution of Equa-
tion (6) with L = Lp and let E := KC. If L solves the
subproblem at the left hand side of (7), then we have

L = Lp + λQ

where Q solves the linear system(
ETE + λI

)
Q = P, P :=

1
2
ETC− Lp. (8)

Proof. Observe that matrix L is optimal for the prob-
lem on the right hand side of (7) if and only if

0 =
∂Q (L,C)

∂L
= −CTK (Y − λC/2−KCL)

λ
+ L,

that is

L =
(
CTK2C + λI

)−1
CTK

(
Y − λ

2
C
)
. (9)

Now, recall that C satisfies

Y − λ

2
C =

λ

2
C + KCLp,

where Lp denote the previous L, which is positive
semidefinite. Hence, equation (9) reads

L =
(
CTK2C + λI

)−1
(

CTK2CLp +
λ

2
CTKC

)
,

(10)
showing that L is symmetric and positive semidefinite.
By letting E := KC, the update (10) can be rewritten
in a more compact form:

L =
(
ETE + λI

)−1 (
ETELp + λ

2 ETC
)

= Lp + λ
(
ETE + λI

)−1 (1
2ETC− Lp

)
= Lp + λQ

where (8) holds.

Learning output kernels with block coordinate descent

10-2 10-1 100 101 102 103 104
25

30

35

40

45

50

a
cc

u
ra

cy
 (

%
)

multiclass_sim0

learn L
identity

10-2 10-1 100 101 102 103 104

regularization parameter

14

12

10

8

6

4

2

0

2

im
p
ro

v
e
m

e
n
t

fr
o
m

 l
e
a
rn

in
g
 L

10-2 10-1 100 101 102 103 104
25

30

35

40

45

50

a
cc

u
ra

cy
 (

%
)

multiclass_sim1

learn L
identity

10-2 10-1 100 101 102 103 104

regularization parameter

20

15

10

5

0

5

im
p
ro

v
e
m

e
n
t

fr
o
m

 l
e
a
rn

in
g
 L

10-2 10-1 100 101 102 103 104
20

25

30

35

40

45

50

55

a
cc

u
ra

cy
 (

%
)

multiclass_sim2

learn L
identity

10-2 10-1 100 101 102 103 104

regularization parameter

25

20

15

10

5

0

5

10

im
p
ro

v
e
m

e
n
t

fr
o
m

 l
e
a
rn

in
g
 L

10-2 10-1 100 101 102 103 104
15

20

25

30

35

40

45

a
cc

u
ra

cy
 (

%
)

multiclass_sim3

learn L
identity

10-2 10-1 100 101 102 103 104

regularization parameter

20

15

10

5

0

5

im
p
ro

v
e
m

e
n
t

fr
o
m

 l
e
a
rn

in
g
 L

Figure 2. Improvement in classification accuracy from learning the output kernel. The four sub-figures correspond to the
four different datasets as described in the text. The top plot in each sub-figure shows the accuracy of the classifier when
using the identity kernel (green x) and when using the learned output kernel (blue +). The bottom plots in each subfigure
shows the difference between the accuracy of the learned output kernel classifier and the best standard classifier. That
is, for each split, we find the peak accuracy of the classifier with identity output kernel, and use this as a baseline. The
results demonstrate that when there is structure in the labels, our method can utilize this to improve accuracy.

5. Experiments

We present two types of empirical evidence showing
the usefulness of our method in the multiclass setting2.
First, we show that learning the class similarities can
result in improved accuracies (Section 5.1). Second,
we visualize the learned structure between classes for
some larger datasets (Section 5.2).

5.1. Improvement in classification accuracy

We simulate an easy structure discovery problem,
namely when classes are mistakenly split. This verifies
the intuition that, by grouping classes that are really
the same, we increase the effective number of exam-

2people.tuebingen.mpg.de/fdinuzzo/okl.html

ples for each class and hence improve performance. In
the experiments, we efficiently compute the solution
for several values of the regularization parameter λ by
using a warm-start procedure.

We generated data from a 100-dimensional mixture
of Gaussians with unit variance. The means of the
Gaussians are placed on the simplex centered around
the origin, with edges of length

√
2. All datasets have

5 labels, (denoted 1,2,3,4,5) but had varying number
of classes. Up to 5 classes were considered (denoted
as a,b,c,d,e), with each class corresponding to a Gaus-
sian. The first dataset sim0 consists of 5 independent
classes, and the other 3 datasets were generated with

people.tuebingen.mpg.de/fdinuzzo/okl.html

Learning output kernels with block coordinate descent

(a) USPS digits (b) Caltech 101 (c) Caltech 256

Figure 3. Interpreting the output kernel, by visualizing edges associated with off diagonal entries of L with largest values.

the following label structure:

sim1 {0, 1}︸ ︷︷ ︸
a

, {2}︸︷︷︸
b

, {3}︸︷︷︸
c

, {4}︸︷︷︸
d

sim2 {0}︸︷︷︸
a

, {1}︸︷︷︸
b

, {2, 3, 4}︸ ︷︷ ︸
c

sim3 {0}︸︷︷︸
a

, {1, 2}︸ ︷︷ ︸
b

, {3, 4}︸ ︷︷ ︸
c

Each class contains 500 examples, which are then uni-
formly allocated labels at random when split. For ex-
ample, sim1 is a mixture of 4 Gaussians, the first of
which contains a 50/50 mix of labels 0 and 1. Note
that in this case, even a perfect classifier would only
obtain 87.5% accuracy since on a quarter of the ex-
amples, it would have 50% accuracy. In 20 different
random splits, 5% of the examples were used for train-
ing with the linear kernel, and the rest for testing. The
small training sets increase the difficulty of the prob-
lem, to explore the case when there is barely enough
data to train the classifier.

From the results shown in Figure 2, we observe that in
all cases with split classes, learning the kernel between
labels significantly improve the performance. Since we
have to estimate more parameters in our framework,
we unsurprisingly perform worse in sim0, when the
labels are truly independent.

5.2. Interpreting the learned similarity

The output kernel L provides the full information of
distances between classes. We present a visualization
of L by showing the graph whose edges are associ-
ated with the largest entries. The visualization was

obtained by setting a threshold on the entries of L
to contain only the largest inter class similarities, and
than placing the resulting graph in a visually appeal-
ing way with Nodebox3. In the following experiments,
the learned matrices L are almost diagonal. Perfor-
mances are comparable with state of the art methods.
The experiments on the largest datasets took roughly
a day to complete on a standard desktop. The limiting
factor was the solution of the Sylvester equation.

5.2.1. USPS digits

We use the standard training/test split of USPS digits,
and used a Gaussian kernel of width 40 on the raw
pixel representation. The accuracy achieved (96.5%)
is comparable to published results. A visualization of
the matrix L containing the top 10 similarities is shown
in Figure 3(a). Note that, since we use the Gaussian
kernel on the pixels, the local information in the image
is lost. It follows that the learned the class similarities
are “blind” to shape information. Classes that have
correlated “digit” regions are deemed similar.

5.2.2. Caltech image classification

We used the Caltech image classification data (Fei-Fei
et al., 2004; Griffin et al., 2007), with 30 examples
per class. The similarity between images was com-
puted using average of the kernels used in (Gehler &
Nowozin, 2009). This included the PHOG shape de-
scriptor, the SIFT appearance descriptor, region co-
variance, local binary patterns and local Gabor func-
tions. The results on Caltech 101 and Caltech 256 are

3http://nodebox.net/code/index.php/Graph

Learning output kernels with block coordinate descent

shown in figure 3(b) and 3(c). In the figures, singleton
classes are not shown to avoid clutter. The achieved
accuracies (75.3% and 43.9% respectively) are compa-
rable to published results.

In Figure 3(b), we can observe 7 clusters of objects.
Some of them are not surprising, such as the one con-
taining Faces and Faces easy, or the “animal” cluster
containing emu, gerenuk, llama and kangaroo. The
latter is likely to be due to very similar backgrounds.
An interesting cluster, which is fully connected, con-
tains geometric objects with regular substructures,
such as cellphone, minaret, accordion, pagoda, and
trilobite. From Figure 3(c), we observe several mean-
ingful clusters, such as planets (mars and saturn),
space objects (comet and galaxy), sticklike objects
(chopsticks, tweezer, sword), and objects of nature
(cactus, fern, waterfall, toad, mushroom, grapes, hi-
biscus). We can conclude that the obtained visualiza-
tions are intuitively plausible. In addition, the learned
similarity between classes depends both on the simi-
larity between the inputs and the class labels.

6. Conclusions

In the paper, we proposed a method to learn simulta-
neously a vector-valued function and a kernel between
the output’s components. The learned kernel encodes
structural relationship between the outputs and can
be used for visualization purposes.

Our method is formulated as a regularization prob-
lem within the framework of RKHS of vector-valued
functions. Although the objective functional is non-
convex, we prove that all the stationary points are
global minimizers, a property called invexity. By ex-
ploiting the specific structure of the problem, we derive
an efficient block-wise coordinate descent algorithm
that alternates between the solution of a discrete time
Sylvester equation and a closed-form update for the
output kernel matrix. The method is applied to learn-
ing label similarity in a multiclass setting. We can
obtain an improvement in classification performance,
and visualize the learned structure in the output space.

References

Albert, A. Conditions for positive and nonnegative
definiteness in terms of pseudoinverses. SIAM Jour-
nal on Applied Mathematics, 17(2):434–440, 1969.

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A.,
Taskar, B., and Vishwanathan, S. V. N. Predicting
Structured Data. The MIT Press, 2007.

Baldassarre, L., Rosasco, L., Barla, A., and Verri,

A. Vector field learning via spectral filtering.
In Machine Learning and Knowledge Discovery in
Databases, volume 6321, pp. 56–71. Springer, 2010.

Ben-Israel, A. and Mond, B. What is invexity? J.
Australian Math. Soc. Ser. B, 28:1–9, 1986.

Caponnetto, A., Micchelli, C. A., Pontil, M., and Ying,
Y. Universal multi-task kernels. Journal of Machine
Learning Research, 9:1615–1646, 2008.

Carmeli, C., Vito, E. De, and Toigo, A. Vector val-
ued reproducing kernel Hilbert spaces of integrable
functions and Mercer theorem. Analysis and Appli-
cations, 4:377–408, 2006.

Craven, B.D. and Glover, B.M. Invex functions and
duality. Journal of Australian Mathematical Society,
24:120, 1985.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learn-
ing multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

Fei-Fei, L., Fergus, R., and Perona, P. Learning gener-
ative visual models from few training examples: An
incremental bayesian approach tested on 101 object
categories. In CVPR, pp. 178, 2004.

Gehler, P. and Nowozin, S. On feature combination
for multiclass object classification. In ICCV, pp.
221–228, 2009.

Griffin, G., Holub, A., and Perona, P. Caltech-256 ob-
ject category dataset. Technical Report 7694, Cal-
tech, 2007.

Lampert, C.H. and Blaschko, M.B. A multiple kernel
learning approach to joint multi-class object detec-
tion. In DAGM, 2008.

Micchelli, C. A. and Pontil, M. On learning vector-
valued functions. Neural Computation, 17:177–204,
2005.

Mishra, S. K. and Giorgi, G. Invexity and optimiza-
tion. Nonconvex Optimization and Its Applications.
Springer, Dordrecht, 2008.

Sima, V. Algorithms for Linear-quadratic Optimiza-
tion. Marcel Dekker, New York, 1996.

Zien, A. and Ong, C.S. Multiclass multiple kernel
learning. In ICML, pp. 1191–1198, 2007.

	Introduction
	Spaces of vector-valued functions
	Reproducing Kernel Hilbert Spaces
	Learning Tasks

	Learning an output kernel
	Matrix notation
	Regularized risk
	Invex functions
	The objective is invex

	A block coordinate descent method
	Sub-problem w.r.t. coefficient matrix C
	Sub-problem w.r.t. output kernel L

	Experiments
	Improvement in classification accuracy
	Interpreting the learned similarity
	USPS digits
	Caltech image classification

	Conclusions

