
Learning Points and Routes to Recommend Trajectories

Dawei Chen∗†, Cheng Soon Ong†∗, Lexing Xie∗†
∗The Australian National University, †Data 61, CSIRO, Australia

{u5708856, chengsoon.ong, lexing.xie}@anu.edu.au

Abstract

The problem of recommending tours to travellers is an impor-
tant and broadly studied area. Suggested solutions include
various approaches of points-of-interest (POI) recommenda-
tion and route planning. We consider the task of recommend-
ing a sequence of POIs, that simultaneously uses information
about POIs and routes. Our approach unifies the treatment
of various sources of information by representing them as fea-
tures in machine learning algorithms, enabling us to learn
from past behaviour. Information about POIs are used to
learn a POI ranking model that accounts for the start and
end points of tours. Data about previous trajectories are used
for learning transition patterns between POIs that enable us
to recommend probable routes. In addition, a probabilistic
model is proposed to combine the results of POI ranking and
the POI to POI transitions. We propose a new F1 score on
pairs of POIs that capture the order of visits. Empirical re-
sults show that our approach improves on recent methods,
and demonstrate that combining points and routes enables
better trajectory recommendations.

Keywords

Trajectory recommendation; learning to rank; planning

1 Introduction

This paper proposes a novel solution to recommend travel
routes in cities. A large amount of location traces are be-
coming available from ubiquitous location tracking devices.
For example, FourSquare has 50 million monthly users who
have made 8 billion check-ins [7], and Flickr hosts over 2 bil-
lion geo-tagged public photos [6]. This growing trend in rich
geolocation data provide new opportunities for better travel
planning traditionally done with written travel guides. Good
solutions to these problems will in turn lead to better urban
experiences for residents and visitors alike, and foster sharing
of even more location-based behavioural data.

There are several settings of recommendation problems for
locations and routes, as illustrated in Figure 1. We sum-
marise recent work most related to formulating and solving
learning problems on assembling routes from POIs, and re-
fer the reader to a number of recent surveys [1, 27, 28] for
general overviews of the area. The first setting can be called
POI recommendation (Figure 1(a)). Each location (A to E)
is scored with geographic and behavioural information such
as category, reviews, popularity, spatial information such as
distance, and temporal information such as travel time un-
certainty, time of the day or day of the week. A popular
approach is to recommend POIs with a collaborative filtering
model on user-location affinity [21], with additional ways to
incorporate spatial [13, 16], temporal [24, 11, 8], or spatial-
temporal [25] information.

A
B

C

D

E

(a) POI Recommendation

A

B

C

D

E

(b) Next Location Recommendation

A

B

C

D

E

(c) Trajectory Recommendation

Figure 1: Three settings of trajectory recommenda-
tion problems. Node size: POI score; edge width:
transition score between pairs of POIs; grey: ob-
served; star: starting location; flag: ending location.
See Section 1 for details.

Figure 1(b) illustrates the second setting: next location
recommendation. Here the input is a partial trajectory (e.g.
started at point A and currently at point B), the task of
the algorithm is to score the next candidate location (e.g, C,
D and E) based on the perceived POI score and transition
compatibility with input A → B. It is a variant of POI rec-
ommendation except both the user and locations travelled to
date are given. The solutions to this problem include incor-
porating Markov chains into collaborative filtering [20, 4, 26],
quantifying tourist traffic flow between points-of-interest [29],
formulating a binary decision or ranking problem [2], and pre-
dict the next location with sequence models such as recurrent
neural networks [15].

This paper considers the final setting: trajectory recom-
mendation (Figure 1(c)). Here the input are some factors
about the desired route, e.g. starting point A and end point
C, along with auxiliary information such as the desired length
of trip. The algorithm needs to take into account location
desirability (as indicated by node size) and transition com-
patibility (as indicated by edge width), and compare route
hypotheses such as A-D-B-C and A-E-D-C. Existing work in
this area either uses heuristic combination of locations and
routes [18, 14, 17], or formulates an optimisation problem that
is not informed or evaluated by behaviour history [9, 3]. We
note, however, that two desired qualities are still missing from
the current solutions to trajectory recommendation. The first
is a principled method to jointly learn POI ranking (a pre-
diction problem) and optimise for route creation (a planning
problem). The second is a unified way to incorporate vari-
ous features such as location, time, distance, user profile and
social interactions, as they tend to get specialised and sepa-
rate treatments. This work aims to address both challenges.
We propose a novel way to learn point preferences and routes
jointly. In Section 2, we describe the features that are used to
ranking points, and POI to POI transitions that are factorised
along different types of location properties. Section 3 details
a number of our proposed approaches to recommend trajec-
tories. We evaluate the proposed algorithms on trajectories
from five different cities in Section 4. The main contributions
of this work are:

1

• We propose a novel algorithm to jointly optimise point
preferences and routes. We find that learning-based ap-
proaches generally outperform heuristic route recommen-
dation [14]. Incorporating transitions to POI ranking re-
sults in a better sequence of POIs, and avoiding sub-tours
further improves performance of classical Markov chain
methods.

• Our approach is feature-driven and learns from past be-
haviour without having to design specialised treatment
for spatial, temporal or social information. It incorpo-
rates information about location, POI categories and be-
haviour history, and can use additional time, user, or
social information if available.

• We show good performance compared to recent re-
sults [14], and also quantify the contributions from dif-
ferent components, such as ranking points, scoring tran-
sitions, and routing.

• We propose a new metric to evaluate trajectories, pairs-
F1, to capture the order in which POIs are visited. Pairs-
F1 lies between 0 and 1, and achieves 1 if and only if
the recommended trajectory is exactly the same as the
ground truth.

Supplemental material, benchmark data and results are avail-
able online at https://bitbucket.org/d-chen/tour-cikm16 .

2 POI, Query and Transition

The goal of tour recommendation is to suggest a sequence of
POIs, (p1, . . . , pL), of length L such that the user’s utility is
maximised. The user provides the desired start (p1 = ps) and
end point (pL = pe), as well as the number L of POIs desired,
from which we propose a trajectory through the city. The
training data consists of a set of tours of varying length in a
particular city. We consider only POIs that have been visited
by at least one user in the past, and construct a graph with
POIs as nodes and directed edges representing the observed
transitions between pairs of POIs in tours.

We extract the category, popularity (number of distinct
visitors) [5], total number of visits and average visit dura-
tion for each POI. POIs are grouped into 5 clusters using
K-means according to their geographical locations to reflect
their neighbourhood. Furthermore, since we are constrained
by the fact that trajectories have to be of length L and start
and end at certain points, we hope to improve the recommen-
dation by using this information. In other words, we use the
query q = (ps, pe, L) to construct new features by contrasting
candidate POIs with ps and pe. For each of the POI features
(category, neighbourhood, popularity, total visits and aver-
age duration), we construct two new features by taking the
difference of the feature in POI p with ps and pe respectively.
For the category (and neighbourhood), we set the feature to
1 when their categories (and cluster identities) are the same
and −1 otherwise. For popularity, total visits and average du-
ration, we take the real valued difference. Lastly, we compute
the distance from POI p to ps (and pe) using the Haversine
formula [22], and also include the required length L.

In addition to information about each individual POI, a
tour recommendation system would benefit from capturing
the likelihood of going from one POI to another different POI.
One option would be to directly model the probability of go-
ing from any POI to any other POI, but this has several weak-
nesses: Such a model would be unable to handle a new POI
(one that has not yet been visited), or pairs of existing POIs
that do not have an observed transition. Furthermore, even

Figure 2: Transition matrices for two POI features
from Melbourne: POI category and neighbourhood.

if we restrict ourselves to known POIs and transitions, there
may be locations which are rarely visited, leading to signifi-
cant challenges in estimating the probabilities from empirical
data.

We model POI transitions using a Markov chain with dis-
crete states by factorising the transition probability (pi to pj)
as a product of transition probabilities between pairs of in-
dividual POI features, assuming independence between these
feature-wise transitions. The popularity, total visits and aver-
age duration are discretised by binning them uniformly into 5
intervals on the log scale. These feature-to-feature transitions
are estimated from data using maximum likelihood principle.
The POI-POI transition probabilities can be efficiently com-
puted by taking the Kronecker product of transition matrices
for the individual features, and then updating it based on
three additional constraints as well as appropriate normalisa-
tion. First we disallow self-loops by setting the probability of
(pi to pi) to zero. Secondly, when multiple POIs have iden-
tical (discretised) features, we distribute the probability uni-
formly among POIs in the group. Third, we remove feature
combinations that has no POI in dataset. Figure 2 visualises
the transition matrices for two POI features, category and
neighbourhood, in Melbourne.

3 Tour Recommendation

In this section, we first describe the recommendation of points
and routes, then we discuss how to combine them, and finally
we propose a method to avoid sub-tours.

3.1 POI Ranking and Route Planning

A naive approach would be to recommend trajectories based
on the popularity of POIs only, that is we always suggest the
top-k most popular POIs for all visitors given the start and
end location. We call this baseline approach PoiPopularity,
and its only adaptation to a particular query is to adjust k
to match the desired length.

On the other hand, we can leverage the whole set of POI
features described in Section 2 to learn a ranking of POIs
using rankSVM, with linear kernel and L2 loss [12],

min
w

1

2
wTw + C

∑
pi,pj∈P, q∈Q

max
(

0, 1−wT (φi,q − φj,q)
)2
,

where w is the parameter vector, C > 0 is a regularisation
constant, P is the set of POIs to rank, Q denotes the queries
corresponding to trajectories in training set, and φi,q is the
feature vector for POI pi with respect to query q. The ranking
score of pi given query q is computed as Ri,q = wTφi,q.

2

https://bitbucket.org/d-chen/tour-cikm16

For training the rankSVM, the labels are generated using
the number of occurrences of POI p in trajectories grouped by
query (ps, pe, L), without counting the occurrence of p when
it is the origin or destination of a trajectory. Our algorithm,
PoiRank, recommends a trajectory for a particular query by
first ranking POIs then takes the top ranked L− 2 POIs and
connects them according to the ranks.

In addition to recommend trajectory by ranking POIs, we
can leverage the POI-POI transition probabilities and recom-
mend a trajectory (with respect to a query) by maximising
the transition likelihood. The maximum likelihood of the
Markov chain of transitions is found using a variant of the
Viterbi algorithm (with uniform emission probabilities). We
call this approach that only uses the transition probabilities
between POIs as Markov.

3.2 Combine Ranking and Transition

We would like to leverage both point ranking and transitions,
i.e., recommending a trajectory that maximises the points
ranking of its POIs as well as its transition likelihood at the
same time. To begin with, we transform the ranking scores
Rj,q of POI pj with respect to query q to a probability dis-
tribution using the softmax function,

PR(pj |q) =
exp(Rj,q)∑
i exp(Ri,q)

, (1)

One option to find a trajectory that simultaneously maximises
the ranking probabilities of its POIs and its transition likeli-
hood is to optimise the following objective:

argmax
T ∈PL

α

L∑
k=2

logPR(pk|q) + (1− α)

L−1∑
k=1

logP (pk+1|pk),

such that p1 = ps, pL = pe and pk ∈ P, 1 ≤ k ≤ L. The first
term captures the POI ranking, and the second one incor-
porates the transition probabilities. T = (p1, . . . , pL) is any
possible trajectory, α ∈ [0, 1] is a parameter to trade-off the
importance between point ranking and transition, and can be
tuned using cross validation in practice. Let S(p; p′, q) be a
convex combination of point ranking and transition,

S(p; p′, q) = α logPR(p|q) + (1− α) logP (p|p′), (2)

then the best path (or walk) can be found using the Viterbi
algorithm. We call this approach that uses both the point
ranking and transitions Rank+Markov, with pseudo code
shown in Algorithm 1, where A is the score matrix, and entry
A[l, p] stores the maximum value associated with the (partial)
trajectory that starts at ps and ends at p with l POI visits; B
is the backtracking-point matrix, and entry B[l, p] stores the
predecessor of p in that (partial) trajectory. The maximum
objective value is A[L, pe], and the corresponding trajectory
can be found by tracing back from B[L, pe].

3.3 Avoiding sub-tours

Trajectories recommended by Markov (Section 3.1) and
Rank+Markov (Section 3.2) are found using the maximum
likelihood approach, and may contain multiple visits to the
same POI. This is because the best solution from Viterbi de-
coding may have circular sub-tours (where a POI already vis-
ited earlier in the tour is visited again). We propose a method
for eliminating sub-tours by finding the best path using an
integer linear program (ILP), with sub-tour elimination con-
straints adapted from the Travelling Salesman Problem [19].

Algorithm 1 Rank+Markov: recommend trajectory with
POI ranking and transition

1: Input: P, ps, pe, L
2: Output: Trajectory T = (ps, · · · , pe) with L POIs
3: Initialise score matrix A and backtracking pointers B
4: for p ∈ P do
5: A[2, p] = S(p; ps, q)
6: B[2, p] = ps
7: end for
8: for l = 2 to L− 1 do
9: for p ∈ P do

10: A[l + 1, p] = maxp′∈P{A[l, p′] + S(p; p′, q)}
11: B[l + 1, p] = argmaxp′∈P{A[l, p′] + S(p; p′, q)}
12: end for
13: end for
14: T = {pe}, l = L, p = pe
15: repeat
16: Prepend B[l, p] to T
17: l = l − 1, p = B[l, p]
18: until l < 2
19: return T

In particular, given a set of POIs P, the POI-POI transition
matrix and a query q = (ps, pe, L), we recommend a trajec-
tory by solving the following ILP:

max
x,u

N−1∑
i=1

N∑
j=2

xij logP (pj |pi)

s.t. xij ∈ {0, 1}, xii = 0, ui ∈ Z, ∀i, j = 1, · · · , N (3)

N∑
j=2

x1j =

N−1∑
i=1

xiN = 1,

N∑
i=2

xi1 =

N−1∑
j=1

xNj = 0 (4)

N−1∑
i=1

xik =

N∑
j=2

xkj ≤ 1, ∀k = 2, · · · , N − 1 (5)

N−1∑
i=1

N∑
j=2

xij = L− 1, (6)

ui − uj + 1 ≤ (N − 1)(1− xij), ∀i, j = 2, · · · , N (7)

where N = |P| is the number of available POIs and xij is a
binary decision variable that determines whether the transi-
tion from pi to pj is in the resulting trajectory. For brevity,
we arrange the POIs such that p1 = ps and pN = pe. Firstly,
the desired trajectory should start from ps and end at pe
(Constraint 4). In addition, any POI could be visited at most
once (Constraint 5). Moreover, only L−1 transitions between
POIs are permitted (Constraint 6), i.e., the number of POI
visits should be exactly L (including ps and pe). The last con-
straint, where ui is an auxiliary variable, enforces that only
a single sequence of POIs without sub-tours is permitted in
the trajectory. We solve this ILP using the Gurobi optimisa-
tion package [10], and the resulting trajectory is constructed
by tracing the non-zeros in x. We call our method that uses
the POI-POI transition matrix to recommend paths without
circular sub-tours MarkovPath.

Sub-tours in trajectories recommended by Rank+Markov
can be eliminated in a similar manner, we solve an ILP by
optimising the following objective with the same constraints
described above,

max
x,u

N−1∑
i=1

N∑
j=2

xij S(pj ; pi, q), (8)

where S(pj ; pi, q) incorporates both point ranking and tran-

3

Table 1: Statistics of trajectory dataset

Dataset #Photos #Visits #Traj. #Users

Edinburgh 82,060 33,944 5,028 1,454
Glasgow 29,019 11,434 2,227 601
Melbourne 94,142 23,995 5,106 1,000
Osaka 392,420 7,747 1,115 450
Toronto 157,505 39,419 6,057 1,395

Table 2: Summary of information captured by differ-
ent trajectory recommendation algorithms

Query POI Trans. No sub-tours

Random × × × ×
PersTour[14] ×

√
×

√

PersTour-L ×
√

×
√

PoiPopularity ×
√

× ×
PoiRank

√ √
× ×

Markov ×
√ √

×
MarkovPath ×

√ √ √

Rank+Markov
√ √ √

×
Rank+MarkovPath

√ √ √ √

sition, as defined in Equation (2). This algorithm is called
Rank+MarkovPath in the experiments.

4 Experiment on Flickr Photos

We evaluate the algorithms above on datasets with trajecto-
ries extracted from Flickr photos [23] in five cities, namely,
Edinburgh, Glasgow, Melbourne, Osaka and Toronto, with
statistics shown in Table 1. The Melbourne dataset is built
using approaches proposed in earlier work [5, 14], and the
other four datasets are provided by Lim et al. [14].

We use leave-one-out cross validation to evaluate different
trajectory recommendation algorithms, i.e., when testing on
a trajectory, all other trajectories are used for training. We
compare with a number of baseline approaches such as Ran-
dom, which naively chooses POIs uniformly at random (with-
out replacement) from the set P \ {ps, pe} to form a trajec-
tory, and PoiPopularity (Section 3.1), which recommends
trajectories based on the popularity of POIs only. Among
the related approaches from recent literature, PersTour [14]
explores POI features as well as the sub-tour elimination con-
straints (Section 3.3), with an additional time budget, and its
variant PersTour-L, which replaces the time budget with a
constraint of trajectory length. Variants of point-ranking and
route-planning approaches including PoiRank and Markov
(Section 3.1), which utilises either POI features or POI-
POI transitions, and Rank+Markov (Section 3.2) that cap-
tures both types of information. Variants that employ ad-
ditional sub-tour elimination constraints (MarkovPath and
Rank+MarkovPath, Section 3.3) are also included. A sum-
mary of the various trajectory recommendation approaches
can be found in Table 2.

4.1 Performance metrics

A commonly used metric for evaluating POI and trajectory
recommendation is the F1 score on points, which is the har-
monic mean of precision and recall of POIs in trajectory [14].
While being good at measuring whether POIs are correctly
recommended, F1 score on points ignores the visiting order

(a) Left: F1=1.0, pairs-F1=0.83
(b) Right: F1=1.0, pairs-F1=0.86

Figure 3: Examples for F1 vs pairs-F1 as evaluation
metric. Solid grey: ground truth; dashed blue: rec-
ommended trajectories. See Section 4.1 for details.

between POIs. We propose a new metric pairs-F1 that con-
siders both POI identity and visiting order, by measuring the
F1 score of every pair of POIs, whether they are adjacent or
not in trajectory,

pairs-F1 =
2PpairRpair

Ppair +Rpair
,

where Ppair and Rpair are the precision and recall of ordered
POI pairs respectively. Pairs-F1 takes values between 0 and
1 (higher is better). A perfect pairs-F1 is achieved if and
only if both the POIs and their visiting order in the rec-
ommended trajectory are exactly the same as those in the
ground truth. On the other hand, pairs-F1 = 0 means none
of the recommended POI pairs was actually visited (in the
designated order) in the real trajectory. An illustration is
shown in Figure 3, the solid grey lines represent the ground
truth transitions that actually visited by travellers, and the
dashed blue lines are the recommended trajectory by one of
the approaches described in Section 3. Both examples have a
perfect F1 score, but not a perfect pairs-F1 score due to the
difference in POI sequencing.

4.2 Results

The performance of various trajectory recommendation ap-
proaches are summarised in Table 3 and Table 4, in terms of
F1 and pairs-F1 scores respectively. It is apparent that al-
gorithms captured information about the problem (Table 2)
outperform the Random baseline in terms of both metrics on
all five datasets.

Algorithms based on POI ranking yield strong perfor-
mance, in terms of both metrics, by exploring POI and query
specific features. PoiRank improves notably upon PoiPop-
ularity and PersTour by leveraging more features. In
contrast, Markov which leverages only POI transitions does
not perform as well. Algorithms with ranking information
(Rank+Markov and Rank+MarkovPath) always outper-
form their respective variants with transition information
alone (Markov and MarkovPath).

We can see from Table 3 that, in terms of F1, MarkovPath
and Rank+MarkovPath outperform their corresponding
variants Markov and Rank+Markov without the path
constraints, which demonstrates that eliminating sub-tours
improves point recommendation. This is not unexpected, as
sub-tours worsen the proportion of correctly recommended
POIs since a length constraint is used. In contrast, most
Markov chain entries have better performance in terms of
pairs-F1 (Table 4), which indicates Markov chain approaches
generally respect the transition patterns between POIs.

PersTour [14] always performs better than its variant
PersTour-L, in terms of both metrics, especially on Glas-

4

Table 3: Performance comparison on five datasets in terms of F1 score. The best method for each dataset
(i.e., a column) is shown in bold, the second best is shown in italic.

Edinburgh Glasgow Melbourne Osaka Toronto

Random 0.570± 0.139 0.632± 0.123 0.558± 0.149 0.621± 0.115 0.621± 0.129
PersTour[14] 0.656± 0.223 0.801± 0.213 0.483± 0.208 0.686± 0.231 0.720± 0.215
PersTour-L 0.651± 0.143 0.660± 0.102 0.576± 0.141 0.686± 0.137 0.643± 0.113
PoiPopularity 0.701± 0.160 0.745± 0.166 0.620± 0.136 0.663± 0.125 0.678± 0.121
PoiRank 0 .700 ± 0 .155 0 .768 ± 0 .171 0 .637 ± 0 .142 0.745± 0.173 0.754± 0.170
Markov 0.645± 0.169 0.725± 0.167 0.577± 0.168 0.697± 0.150 0.669± 0.151
MarkovPath 0.678± 0.149 0.732± 0.168 0.595± 0.148 0.706± 0.150 0.688± 0.138
Rank+Markov 0.659± 0.174 0.754± 0.173 0.613± 0.166 0.715± 0.164 0.723± 0.185
Rank+MarkovPath 0.697± 0.152 0.762± 0.167 0.639± 0.146 0 .732 ± 0 .162 0 .751 ± 0 .170

Table 4: Performance comparison on five datasets in terms of pairs-F1 score. The best method for each
dataset (i.e., a column) is shown in bold, the second best is shown in italic.

Edinburgh Glasgow Melbourne Osaka Toronto

Random 0.261± 0.155 0.320± 0.168 0.248± 0.147 0.304± 0.142 0.310± 0.167
PersTour[14] 0.417± 0.343 0.643± 0.366 0.216± 0.265 0.468± 0.376 0.504± 0.354
PersTour-L 0.359± 0.207 0.352± 0.162 0.266± 0.140 0.406± 0.238 0.333± 0.163
PoiPopularity 0 .436 ± 0 .259 0.507± 0.298 0.316± 0.178 0.365± 0.190 0.384± 0.201
PoiRank 0.432± 0.251 0 .548 ± 0 .311 0.339± 0.203 0.511± 0.309 0.518± 0.296
Markov 0.417± 0.248 0.495± 0.296 0.288± 0.195 0.445± 0.266 0.407± 0.241
MarkovPath 0.400± 0.235 0.485± 0.293 0.294± 0.187 0.442± 0.260 0.405± 0.231
Rank+Markov 0.444± 0.263 0.545± 0.306 0.351± 0.220 0.486± 0.288 0.512± 0.303
Rank+MarkovPath 0.428± 0.245 0.533± 0.303 0 .344 ± 0 .206 0 .489 ± 0 .287 0 .514 ± 0 .297

gow and Toronto datasets. This indicates the time budget
constraint is more helpful than length constraint for recom-
mending trajectories. Surprisingly, we observed that Pers-
Tour is outperformed by Random baseline on Melbourne
dataset. It turns out that on this dataset, many of the ILP
problems which PersTour needs to solve to get the recom-
mendations are difficult ILP instances. In the leave-one-out
evaluation, although we utilised a large scale computing clus-
ter with modern hardware, 12% of evaluations failed as the
ILP solver was unable to find a feasible solution after 2 hours.
Furthermore, a lot of recommendations were suboptimal solu-
tions of the corresponding ILPs due to the time limit. These
factors lead to the inconsistent performance of PersTour on
Melbourne dataset.

4.3 An Illustrative Example

Figure 4 illustrates an example from Edinburgh. The ground
truth is a trajectory of length 4 that starts at a POI of cat-
egory Structures, visits two intermediate POIs of category
Structures and Cultural and terminates at a POI of category
Structures. The trajectory recommended by PersTour is a
tour with 11 POIs, as shown in Figure 4(a), with none of the
desired intermediate POIs visited. PoiRank (Figure 4(b))
recommended a tour with correct POIs, but with completely
different routes. On the other hand, Markov (Figure 4(c))
missed one POI but one of the intermediate routes is con-
sistent with the ground truth. The best recommendation,
as shown in Figure 4(d), with exactly the same points and
routes as the ground truth, which in this case is achieved by
Rank+MarkovPath.

5 Discussion and Conclusion

In this paper, we propose an approach to recommend trajec-
tories by jointly optimising point preferences and routes. This
is in contrast to related work which looks at only POI or next

location recommendation. Point preferences are learned by
ranking according to POI and query features, and factorised
transition probabilities between POIs are learned from previ-
ous trajectories extracted from social media. We investigate
the maximum likelihood sequence approach (which may rec-
ommend sub-tours) and propose an improved sequence rec-
ommendation method. Our feature driven approach naturally
allows learning the combination of POI ranks and routes.

We argue that one should measure performance with re-
spect to the visiting order of POIs, and suggest a new pairs-
F1 metric. We empirically evaluate our tour recommenda-
tion approaches on five datasets extracted from Flickr photos,
and demonstrate that our method improves on prior work, in
terms of both the traditional F1 metric and our proposed
performance measure. Our promising results from learning
points and routes for trajectory recommendation suggests
that research in this domain should consider both informa-
tion sources simultaneously.

Acknowledgements

We thank Kwan Hui Lim for kindly providing his R code
to reproduce his experiments. This work is supported in part
by the Australian Research Council via the Discovery Project
program DP140102185.

References

[1] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel. Recom-
mendations in location-based social networks: a survey.
GeoInformatica, 19(3):525–565, 2015.

[2] R. Baraglia, C. I. Muntean, F. M. Nardini, and F. Sil-
vestri. LearNext: learning to predict tourists movements.
CIKM ’13, pages 751–756. ACM, 2013.

[3] C. Chen, D. Zhang, B. Guo, X. Ma, G. Pan, and
Z. Wu. TripPlanner: Personalized trip planning lever-

5

(a) PersTour (b) PoiRank (c) Markov (d) Best

Cultural

Historical

Parks

Museums

Structures

Figure 4: Different recommendations from algorithm variants. See the main text in Section 4.3 for description.

aging heterogeneous crowdsourced digital footprints.
IEEE Transactions on Intelligent Transportation Sys-
tems, 16(3):1259–1273, 2015.

[4] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you
like to go next: Successive point-of-interest recommen-
dation. IJCAI ’13, pages 2605–2611. AAAI Press, 2013.

[5] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Gol-
bandi, R. Lempel, and C. Yu. Automatic construction
of travel itineraries using social breadcrumbs. HT ’10,
pages 35–44. ACM, 2010.

[6] Flickr. Flickr photos on the map. https://www.flickr.
com/map , retrieved May 2016.

[7] Foursquare. FourSquare: about us. https://foursquare.
com/about , retrieved May 2016.

[8] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring tempo-
ral effects for location recommendation on location-based
social networks. RecSys ’13, pages 93–100. ACM, 2013.

[9] A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi. Cus-
tomized tour recommendations in urban areas. WSDM
’14, pages 313–322. ACM, 2014.

[10] Gurobi. Gurobi Optimization. http://www.gurobi.com
, retrieved May 2016.

[11] H.-P. Hsieh and C.-T. Li. Mining and planning time-
aware routes from check-in data. CIKM ’14, pages 481–
490. ACM, 2014.

[12] C.-P. Lee and C.-b. Lin. Large-scale linear rankSVM.
Neural computation, 26(4):781–817, 2014.

[13] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui.
GeoMF: Joint geographical modeling and matrix factor-
ization for point-of-interest recommendation. KDD ’14,
pages 831–840. ACM, 2014.

[14] K. H. Lim, J. Chan, C. Leckie, and S. Karunasekera.
Personalized tour recommendation based on user inter-
ests and points of interest visit durations. IJCAI ’15,
2015.

[15] Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next
location: A recurrent model with spatial and temporal
contexts. AAAI ’16, 2016.

[16] Y. Liu, W. Wei, A. Sun, and C. Miao. Exploiting geo-
graphical neighborhood characteristics for location rec-
ommendation. CIKM ’14, pages 739–748. ACM, 2014.

[17] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng. Personal-
ized trip recommendation with multiple constraints by
mining user check-in behaviors. SIGSPATIAL ’12, pages
209–218. ACM, 2012.

[18] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zhang.
Photo2Trip: Generating travel routes from geo-tagged
photos for trip planning. MM ’10, pages 143–152. ACM,
2010.

[19] C. H. Papadimitriou and K. Steiglitz. Combinatorial op-
timization: algorithms and complexity. Dover Publica-
tions, 1998.

[20] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Factorizing personalized Markov chains for next-basket
recommendation. WWW ’10, pages 811–820. ACM,
2010.

[21] Y. Shi, P. Serdyukov, A. Hanjalic, and M. Larson. Per-
sonalized landmark recommendation based on geotags
from photo sharing sites. ICWSM ’11, 2011.

[22] R. W. Sinnott. Virtues of the haversine. Sky and tele-
scope, 68(2):159, 1984.

[23] B. Thomee, B. Elizalde, D. A. Shamma, K. Ni, G. Fried-
land, D. Poland, D. Borth, and L.-J. Li. YFCC100M:
The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

[24] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann.
Time-aware point-of-interest recommendation. SIGIR
’13, pages 363–372. ACM, 2013.

[25] Q. Yuan, G. Cong, and A. Sun. Graph-based point-of-
interest recommendation with geographical and tempo-
ral influences. CIKM ’14, pages 659–668. ACM, 2014.

[26] W. Zhang and J. Wang. Location and time aware so-
cial collaborative retrieval for new successive point-of-
interest recommendation. CIKM ’15, pages 1221–1230.
ACM, 2015.

[27] Y. Zheng. Trajectory data mining: an overview. ACM
Transactions on Intelligent Systems and Technology,
6(3):29, 2015.

[28] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: concepts, methodologies, and applications.
ACM Transactions on Intelligent Systems and Technol-
ogy, 5(3):38, 2014.

[29] Y.-T. Zheng, Z.-J. Zha, and T.-S. Chua. Mining travel
patterns from geotagged photos. ACM Transactions
on Intelligent Systems and Technology, 3(3):56:1–56:18,
May 2012.

6

https://www.flickr.com/map
https://www.flickr.com/map
https://foursquare.com/about
https://foursquare.com/about
http://www.gurobi.com

A POI Features for Ranking

Table 5: Features of POI p used in rankSVM given query (ps, pe, L)

Feature Description

category one-hot encoding of the category of p
neighbourhood one-hot encoding of the POI cluster that p resides in
popularity logarithm of POI popularity of p
nVisit logarithm of the total number of visit by all users at p
avgDuration logarithm of the average duration at p

trajLen trajectory length L, i.e., the number of POIs required
sameCatStart 1 if the category of p is the same as that of ps, −1 otherwise
sameCatEnd 1 if the category of p is the same as that of pe, −1 otherwise
sameNeighbourhoodStart 1 if p resides in the same POI cluster as ps, −1 otherwise
sameNeighbourhoodEnd 1 if p resides in the same POI cluster as pe, −1 otherwise
distStart distance between p and ps, calculated using the Haversine formula
distEnd distance between p and pe, calculated using the Haversine formula
diffPopStart real-valued difference in POI popularity of p from that of ps
diffPopEnd real-valued difference in POI popularity of p from that of pe
diffNVisitStart real-valued difference in the total number of visit at p from that at ps
diffNVisitEnd real-valued difference in the total number of visit at p from that at pe
diffDurationStart real-valued difference in average duration at p from that at ps
diffDurationEnd real-valued difference in average duration at p from that at pe

Entertainment

Beach

City precincts

Cultural

Education

Historical

Institutions

Parks

Museums

Religion

Shopping

Sports

Structures

Transport

Figure 5: POI Categories

We described an algorithm to recommend trajectories based on ranking POIs (PoiRank) in Section 3.1, the features used
to rank POIs are POI and query specific, as described in Table 5.

Categories of POIs in all of the five trajectory datasets are show in Figure 5. The distribution of POI popularity, the number
of visit and average visit duration are shown in Figure 6.

To rank POIs, features described in Table 5 are scaled to range [−1.0, 1.0] using the same approach as that employed by
libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), i.e., fitting a linear function f(x) = ax + b for feature x such that
the maximum value of x maps to 1.0 and the minimum value maps to −1.0.

B Transition Probabilities

Table 6: POI features used to factorise POI-POI transition probabilities

Feature Description

category category of POI
neighbourhood the cluster that a POI resides in
popularity (discretised) popularity of POI
nVisit (discretised) total number of visit at POI
avgDuration (discretised) average duration at POI

We compute the POI-POI transition matrix by factorising transition probabilities from POI pi to POI pj as a product of
transition probabilities between pairs of individual POI features, which are shown in Table 6.

POI Features are discretised as described in Section 2 and transition matrices of individual features are computed using
maximum likelihood estimation, i.e., counting the number of transitions for each pair of features then normalising each row,
taking care of zeros by adding a small number ε 1 to each count before normalisation. Figure 7 visualises the transition
matrices for individual POI features in Melbourne.

The POI-POI transition matrix is computed by taking the Kronecker product of the transition matrices for the individual
features, and then updating it with the following constraints:

1In our experiments, ε = 1.

7

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

0 100 200 300 400 500
0
1
2
3
4
5
6
7
8

#P
O

Is
Edinburgh

0 50 100 150 200
0
1
2
3
4
5
6
7
8
9

Glasgow

0 50 100 150 200 250 300

POI Popularity

0
5

10
15
20
25
30
35
40

Melbourne

0 20 40 60 80 100 120 140
0

2

4

6

8

10
Osaka

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12
Toronto

(a) Distribution of POI popularity

0 200 400 600 800
1000

0

2

4

6

8

10

#P
O

Is

Edinburgh

0 50 100 150 200 250 300
0

2

4

6

8

10
Glasgow

0 100 200 300 400 500

#Visits at POI

0
5

10
15
20
25
30
35
40
45

Melbourne

0 20 40 60 80 100 120 140 160
0
1
2
3
4
5
6
7
8

Osaka

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12
Toronto

(b) Distribution of the number of visit at POI

103 104 105 106
100

101

102

103

104

#P
O

I V
is

its

Edinburgh

103 104 105
100

101

102

103

104
Glasgow

103 104 105

POI Visit Duration (seconds)

100

101

102

103

104
Melbourne

103 104 105
100

101

102

103

104
Osaka

104 105 106
100

101

102

103

104
Toronto

(c) Distribution of the visit duration at POI

Figure 6: Distribution of POI popularity, the number of visit and visit duration

• Firstly, we disallow self transitions by setting probability of (pi to pi) to zero.

• Secondly, when a group of POIs have identical (discretised) features (say a group with M POIs), we distribute the
probability uniformly among POIs in the group, in particular, the incoming (unnormalised) transition probability (say,
Pin) of the group computed by taking the Kronecker product is divided uniformly among POIs in the group (i.e., Pin

M
),

which is equivalent to choose a POI in the group uniformly at random. Moreover, the outgoing (unnormalised) transition
probability of each POI is the same as that of the group, since in this case, the transition from any POI in the group to
one outside the group represents an outgoing transition from that group. In addition, the self-loop transition of the group
represents transitions from a POI in the group to other POIs (M − 1 POIs) in the same group, similar to the outgoing
case, the (unnormalised) self-loop transition probability (say Po) is divided uniformly (i.e., Po

M−1
), which corresponds to

choose a transition (from pi) among all transitions to the other M − 1 POIs (exclude self-loop pi to pi) in that group
uniformly at random.

• Lastly, we remove feature combinations that has no POI in dataset and normalise each row of the (unnormalised) POI-POI
transition matrix to form a valid probability distribution for each POI.

Figure 7: Transition matrices for five POI features: POI category, neighbourhood, popularity, number of
visits, and visit duration. These statistics are from the Melbourne dataset.

8

C Experiment

C.1 Dataset

Trajectories used in experiment (Section 4) are extracted using geo-tagged photos in the Yahoo! Flickr Creative Commons
100M (a.k.a. YFCC100M) dataset [23] as well as the Wikipedia web-pages of points-of-interest (POI). Photos are mapped to
POIs according to their distances calculated using the Haversine formula [22], the time a user arrived a POI is approximated
by the time the first photo taken by the user at that POI, similarly, the time a user left a POI is approximated by the time
the last photo taken by the user at that POI. Furthermore, sequence of POI visits by a specific user are divided into several
pieces according to the time gap between consecutive POI visits, and the POI visits in each piece are connected in temporal
order to form a trajectory [5, 14].

C.2 Parameters

We use a 0.5 trade-off parameter for PersTour and PersTour-L, found to be the best weighting in [14]. The regularisation
parameter C in rankSVM is 10.0. The trade-off parameter α in Rank+Markov and Rank+MarkovPath is tuned using
cross validation. In particular, we split trajectories with more than 2 POIs in a dataset into two (roughly) equal parts, and use
the first part (i.e., validation set) to tune α (i.e., searching value of α such that Rank+Markov achieves the best performance
on validation set, in terms of the mean of pairs-F1 scores from leave-one-out cross validation), then test on the second part
(leave-one-out cross validation) using the tuned α, and vice verse.

C.3 Implementation

We employ the rankSVM implementation in libsvmtools (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/). Integer
linear programming (ILP) are solved using Gurobi Optimizer (http://www.gurobi.com/) and lp solve (http://lpsolve.
sourceforge.net/). Dataset and code for this work are available in repository https://bitbucket.org/d-chen/tour-cikm16.

C.4 Performance metric

A commonly used metric for evaluating POI and trajectory recommendation is the F1 score on points [14], Let T be the
trajectory that was visited in the real world, and T̂ be the recommended trajectory, PT be the set of POIs visited in T , and
PT̂ be the set of POIs visited in T̂ , F1 score on points is the harmonic mean of precision and recall of POIs in trajectory,

F1 =
2PpointRpoint

Ppoint +Rpoint
, where Ppoint =

|PT ∩ PT̂ |
|T̂ |

and Rpoint =
|PT ∩ PT̂ |
|T | .

A perfect F1 (i.e., F1 = 1) means the POIs in the recommended trajectory are exactly the same set of POIs as those in the
ground truth, and F1 = 0 means that none of the POIs in the real trajectory was recommended.

While F1 score on points is good at measuring whether POIs are correctly recommended, it ignores the visiting order
between POIs. Pairs-F1 takes into account both the point identity and the visiting orders in a trajectory. This is done by
measuring the F1 score of every pair of ordered POIs, whether they are adjacent or not in trajectory,

pairs-F1 =
2PpairRpair

Ppair +Rpair
, where Ppair =

Nc

|T̂ |(|T̂ | − 1)/2
and Rpair =

Nc

|T |(|T | − 1)/2
,

and Nc
2 is the number of ordered POI pairs (pj , pk) that appear in both the ground-truth and the recommended trajectories,

(pj ≺T pk ∧ pj ≺T̂ pk) ∨ (pj �T pk ∧ pj �T̂ pk),

with pj 6= pk, pj , pk ∈ PT ∩ PT̂ , 1 ≤ j 6= k ≤ |T |. Here pj ≺T pk denotes POI pj was visited before POI pk in trajectory T
and pj �T pk denotes pj was visited after pk in T .

Pairs-F1 takes values between 0 and 1. A perfect pairs-F1 (1.0) is achieved if and only if both the POIs and their visiting
orders in the recommended trajectory are exactly the same as those in the ground truth. Pairs-F1 = 0 means none of the
recommended POI pairs was actually visited in the real trajectory.

Performance data reported in Table 3 and Table 4 are the mean and standard deviation of instances successfully recom-
mended by all methods shown in Table 2.

2We define pairs-F1 = 0 when Nc = 0.

9

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.gurobi.com/
http://lpsolve.sourceforge.net/
http://lpsolve.sourceforge.net/
https://bitbucket.org/d-chen/tour-cikm16

	Introduction
	POI, Query and Transition
	Tour Recommendation
	POI Ranking and Route Planning
	Combine Ranking and Transition
	Avoiding sub-tours

	Experiment on Flickr Photos
	Performance metrics
	Results
	An Illustrative Example

	Discussion and Conclusion
	POI Features for Ranking
	Transition Probabilities
	Experiment
	Dataset
	Parameters
	Implementation
	Performance metric

