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1 Application to Biochemical Reaction Networks

The aim of the introduced method for experimental design is that of model dis-
crimination. In its application to biochemical reaction network modeling, each
element of the hypothesis class F consists of an alternative reaction network.
Such hypotheses offer hypothetical explanations for the studied biochemical pro-
cess. Models are identified with functions f ∈ F , which define vector fields for
a set of biochemical reactions. The kinetics of the system is often described in
terms of the ODE system

dx(t)

dt
= Nr(x(t), θ) ≡ f(x(t), θ), (1)

where x(t) ∈ Rn is the vector of concentrations of the chemical species involved
in the model, r(x(t), θ) is the vector of reaction rates for species concentrations
x(t) and kinetic parameters θ ∈ Rd, and N is the stoichiometric matrix mapping
the q reactions to the n state component [1]. Since the integral solution of the
system of ODEs is not only parameterized by the kinetic parameters, but also by
initial conditions, the total parameter of the model is defined as the compound
vector

ξ =

[
x(t0)
θ

]
. (2)
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Furthermore, f is assumed to be differentiable with respect to x(t) and θ, such
that the preconditions for the Picard-Lindelöf theorem are fulfilled and such
that Eq. (1) has a unique solution. The IVP is assumed to be well posed in the
sense of Hadamard.

2 Uncertainty Propagation without Perturba-
tions

This section presents different methods for the numerical calculation and the
approximation of the factorial likelihoods p(f |Yπ). The process is often referred
to as uncertainty propagation since the calculations consist of propagating the
probability distribution reflecting uncertainty regarding the values of the total
parameter ξ.

Forward equations. Let p(t;x, θ) be the probability density of a system de-
scribed by the system of ODE at time t for concentration x and kinetic param-
eters θ ∈ Rd. In particular, p(t0;x, θ) = N (ξ;µξ,Σξ) because of the assumption
in the distribution of the parameters. By solving the partial differential equation
(PDE) given by the continuity equation for p(t;x, θ),

∂

∂t
p(t;x, θ) = −divx[p(t;x, θ)f(x, θ)]

and integrating out the resulting probability density over θ, one gets the proba-
bility density

∫
p(x, θ)bθ of the state of the system at any time point and could

calculate the probability density of measurement data out of that. The numer-
ical solution of PDEs becomes, however, harder with increasing dimension of
the surrounding space. The straightforward application of this approach does
not seem to be suited for the solution of typical problems from systems biology
with, for instance, & 50 species and comparable numbers of kinetic parameters.
Feasible alternatives which overcome the mentioned limitation are described
below.

Sequential Monte Carlo methods aim at approximating a probability density
through a discrete probability measure defined on a set of random samples or
representatives of the original measure together with associated weights [2].
In the considered cases, samples of the total parameter ξ are drawn in order to
approximate the integral form of the likelihood function by a sum over parameter
samples.

The approximation resulting from the linearization of the flow with respect to
the total parameter ξ suggests that the mean of the concentration distributions
at different times is propagated by the flow φ. For the nonlinear system of ODEs
f , this is in general not true. A better approach for uncertainty propagation
is given by the so-called unscented transform [3]. Linearization techniques for
uncertainty propagation have a long tradition in filtering techniques and are
part of the Extended Kalman Filter (EKF); the unscented transform has been
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developed to overcome the known problems of the EKF when applied to strongly
nonlinear systems [2, 3]. While giving better results for nonlinear systems, it still
allows efficient calculation and the assumption of normal distributions – a set of
properties making it a good choice for the calculations of the mutual information.
The unscented transform is only suited to approximate transformations between
two probability spaces of the same dimension. The linearization of the flow
and the unscented transform both approximate the probability distributions by
normal or Gaussian ones, while the particle method does not. Therefore we
will denote the former ones as Gaussian methods to distinguish them from the
(more general) particle method.

3 Comparison of Uncertainty Propagation Meth-
ods

First, we demonstrate the different methods for uncertainty propagation pre-
sented in Section 2: particle method, linearization of the flow and unscented
transform. We are only interested in probability distributions of measurements
at single time points, neglecting correlation effects. Our main aim is to compare
quality and computation time of the different propagation methods:

• How fast does the density approximated by the particle method converge
to the true distribution?

• How well is the true distribution of measurements approximated by the
Gaussian methods, the linearization of the flow and the unscented trans-
form? Is it safe to use a Gaussian method instead of the particle method
able to approximate any probability distribution to a given accuracy?

• What is the memory and time consumption of the different propagation
methods? Is it worth to use Gaussian methods instead of the particle
method?

In contrast to Gaussian methods, the particle method is in principle able
to handle any distribution to an arbitrary precision by calculating with a large
number of particles. Therefore its results can be used as a reference for compar-
ative evaluations. For this aim, the particle method is executed several times by
gradually increasing the particle number z until convergence is observed. The
distribution gained that way is compared to the normal distributions calculated
by the Gaussian methods. Normal distributions are completely determined by
their mean and covariance (or variance, resp., in the one-dimensional case). The
comparison of mean and variance of the distributions calculated by the Gaussian
methods to those of the reference distribution can therefore be used to measure
the quality of the Gaussian approximations. For the comparison of the means,
we introduce their relative errors:

e :=
|µGaussian − µPI |

σPI
,
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where µGaussian is the mean calculated with one of the Gaussian approxima-
tions, µPI and σPI are mean and standard deviation calculated by the particle
method.

We here bound the computational and storage complexity of alternative fil-
tering approaches. In the table, m denotes the number of parameters, k the
number of particles. PC denotes the particle method with likelihoods approxi-
mated by a Gaussian mixture model, LC is the local linearization of the flow, LI
the linearization with independent measurements, and UI Unscented Kalman
filtering.

Propagation Number Memory
method of ODEs usage
PC kn kns
LC n(n+m) ns+ (ns)2

LI n(1 + n+m) ns+ n2s
UI 2(n+m) + 1 ns+ n2s

All experiments are performed with Matlab 7.8 under Linux on an Intel
Core Duo machine with a clock frequency of 3.16 GHz and 2 GB of RAM and
Brutus.

3.1 Theorem and Proof

Theorem. The greedy method which selects up to κ informative readouts and
time points to discriminate dynamical systems yields the near-optimal design π̄
such that

I(Yπ̄, f) ≥
(

1− 1

e

)
max

π⊆S×N : |π|≤κ
I(Yπ, f), (3)

with a polynomial number of evaluations of the objective; moreover, such con-
stant approximation factor is the best in polynomial time, unless P=NP.

Proof. For each f ∈ F , the trajectory in the state space is determined by
the integral solution of the IVP for the system of ODEs. Let each integral
solution be φf (t), such that φf (t) = x(t) for all t > t0, for the respective sys-
tems of ODEs in the hypothesis class F . On the basis of the measurement
model defined the main text, it is possible to construct the graphical model
with the set of nodes V = {f} ∪ {yj(ti)}(i,j)∈π and the set of directed edges
E = {(yj(ti)|f) : (i, j) ∈ π}. The edges express the conditional independence
of each yj(ti) given f . The set of nodes V = {f} ∪ {yj(ti)}(i,j)∈π can then be
partitioned into two disjoint subsets {f} and {yj(ti)}(i,j)∈π. In these partitions,
the random variables in {yj(ti)}(i,j)∈π are conditionally independent given the
integral solution φf (t), which in turn depends on f . Such configuration is guar-
anteed to yield a mutual information as a function of the experiment π which
is submodular, non-decreasing and for which I(Y∅, f) = 0 [7]. At this point, our
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Propagation method Model t = 10 min t = 20 min t = 50 min
mean SD mean SD mean SD

Particles

I 134.4 13.2 97.7 14.3 79.6 13.3
IV 176.2 47.3 138.9 51.3 103.1 43.4
V 143.2 13.3 71.2 19.0 45.1 19.1
VI 127.7 15.0 65.9 14.8 54.3 13.0

Linearization

I 133.8 13.2 96.8 14.1 78.7 13.0
IV 171.3 45.2 130.5 44.6 95.4 32.9
V 142.8 13.3 70.7 18.8 45.7 18.1
VI 127.0 18.7 64.3 21.1 53.2 24.8

Unscented transform

I 134.3 13.3 97.8 14.4 79.5 13.3
IV 176.5 48.3 139.5 54.1 104.1 44.8
V 143.1 13.4 71.1 19.1 45.0 19.7
VI 127.7 15.1 65.8 14.9 54.3 13.0

setting inherits the (1− 1/e) factor in the approximation bound with a polyno-
mial number of evaluations [7, 9], which is the best factor unless P=NP [7, 10] �.

3.2 Results

The four different Bergman models (I, IV, V and VI) predict a similar glucose
time course; model IV has a notably larger uncertainty than the other models.
All models show a rapid glucose degradation in the first 20 minutes and then
reach a steady state. The mean blood glucose concentration in this steady state
lies between 50 mg/dl (models V and VI) and 100 mg/dl (model IV). The
uncertainty generally increases during the degradation phase, has a maximum
around the point where the systems enter steady state, and then slightly de-
creases again for most of the models. This behavior is pronounced in model
IV.

The distributions calculated by the particle method converge to the true ones
when using more and more particles. When using 102 particles, even narrow
distributions are not represented well; with 103 particles, narrow distributions
are well represented, whereas broad ones (e.g. model IV) are still quite fuzzy,
even around their center; with 104 particles, the distributions are already quite
precise. In the following, we will use the densities calculated by the particle
method with z = 105 particles as a reference to evaluate the normal approx-
imations calculated by the Gaussian methods; this distribution gives a good
approximation to the true ones.

The measurement distributions calculated by the Gaussian methods are sim-
ilar to the reference distribution calculated by the particle method (table below
and Fig. 3). Mean and standard deviation of the concentration distributions
calculated by different methods are reported in the table below.
The relative errors e of the means calculated by the linearization of the flow are
mostly below 11%; only in two cases, both for model IV, the one having the
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highest uncertainty (Fig. 1), the mean deviates from the reference distribution
by around 0.17 standard deviations. The unscented transform performs signif-
icantly better; even for model IV, the relative error is below 2.5%, and in all
other cases even below 1% (see table). The larger error for model IV is probably
due to the skewness of the true distribution (Fig. 3) that that gets lost when
approximating with a (symmetric) normal distribution.

The standard deviations calculated with the linearization of the flow match
the reference deviations calculated using the particle method with a difference
of less than 5% in models I and V. The standard deviations of models IV and
VI differ much more from the reference, namely between 5% and 92%. As well
as for the means, the unscented transform performs better in approximating the
standard deviations. With only one exception (model IV at time t = 20 min),
all standard deviations from the unscented transform do not differ by more than
5% from the reference values.

On our test machine, the calculation of the approximation using the particle
method took 0.54 s per 1000 particles using the fast ODE solver CVODE [4] linked
with the Systems Biology Toolbox 2 [5]. The calculation of the densities with
the linearization of the flow took 0.17 s using Matlab’s ODE solver ode15s,
with the unscented transform 0.48 s using ode15s or 0.013 s using CVODE.

For the Bergman minimal models, and under the assumption of independent
measurement values, the method of choice for uncertainty propagation is clearly
the unscented transform.

Although the linearization of the flow gives results of inferior quality com-
pared to those of the unscented transform, the overall judgment for the un-
scented transform given above is also true for this method. Nevertheless, the
unscented transform is clearly preferable when the assumption of independent
measurement values is made; without that assumption, linearization of the flow
is still a valuable alternative to the particle method. More caution has to be
taken in the case of strong nonlinearity of large uncertainty; since the lineariza-
tion of the flow operates strictly locally, calculating the flow and its derivatives
solely for the mean total parameter µξ, it cannot average out local nonlinearity
as the unscented transform does.

Despite the good performance of the Gaussian methods, we want to empha-
size that the results gained here for the Bergman models cannot be transferred
to any other set of systems biological models. Gaussian methods can e.g. not
at all handle systems that exhibit bifurcations where a unimodal distribution
can be propagated into a bimodal one [1]. We therefore propose the following
proceeding when faced with an experimental design problem for a new set of
systems: first, propagate the uncertainty with a low number of particles. By
a “low number”, we mean a number that does not slow down calculation too
much, but nevertheless is sufficient to recognize important properties of the
measurement distributions. If they are seen to be unimodal and not too skew,
a Gaussian method is appropriate for further investigations; if the assumption
of independent measurement values are made, the unscented transform is to be
preferred, otherwise the linearization of the flow.

The comparison of the different computation times shows that the number
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of ODEs that have to be solved for the different models does not determine
the computation time alone. For both Gaussian methods, the number of ODEs
to be solved for the Bergman models is approximately the same, 37 for the
linearization of the flow and 42 for the unscented transform. Nevertheless, the
computation time for the unscented case is approximately three times higher
than for linearization of the flow using the same ODE solver ode15s. A possible
explanation for this is that the ODEs of the derivatives of the flow are easier
to solve than those of the flow itself, what is plausible at least for mass action
kinetics, or that the calculation of the sample points for the unscented transform
(Section 2) involving a Cholesky decomposition also takes a considerable amount
of time. The latter guess is substantiated by the comparison of the computation
times of particle method and unscented transform. For z = 103 particles, a total
of 6 · 103 ODEs have to be solved with the particle method for all four models,
about 140 times more than for the unscented transform. Nevertheless, the
computation times only differ by a factor of approximately 40.

4 Bergman Minimal Models

The Bergman Minimal Models are a small set of of simple models of glucose
degradation, to estimate insulin sensitivity. They regard the time course of
insulin concentration as input and the glucose concentration as output of the
system. In addition to those two species, they include no more than five param-
eters. Because of this, calculation with the models is quick. For three of the
seven original models [12], not all of the parameters were identifiable, the four
remaining ones are used for testing.

The four models used for the evaluations are shown in Fig. 4.
For the simulations, all the models are assigned a prior probability of p(f) =

1
4 and measurement uncertainty of Σv = 5(mg/dl)2 is used. This is 2% of of
the glucose concentration in the steady state.

4.1 Experiments

When we let the algorithm select a set of two measurement time points, the
mutual information between data and models is naturally higher. Having more
measurements will increase (or at least not decrease) our information about the
models. Figure 5 shows the expected information gain for measuring the glucose
concentrations at two time points. The maximum information can be gained
when measuring at 32 minutes and at 33 minutes, marked by the blue cross in
the plot.

It might seem surprising that two measurements so close to each other lead
to a higher mutual information than for example measuring at the beginning
and at the end of the time course. But by having two adjacent measurement
values, information about the first derivative of the curve can be obtained.

The greedy optimization algorithm, only approximately finds an optimal
set of measurements. Because of submodularity of expected information gain
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we know, that we are at least 63% close to the optimum, but this is a very
loose bound. Therefore it is interesting to see how close we actually are to the
optimal solution. Since the Bergman minimal models are quick to calculate
and if we only consider a set of 20 time points to select from it was possible
to compute the expected information gain for all

(
20
5

)
= 15504 combinations of

five measurements.
The expected information gain is shown in Tab. 1 in the main text for all

possible subsets of cardinality κ = 3, 4, 5. The expected information gain for
the optimal and near-optimal subsets is very close and within expected error.
The subsets also only differ in one measurement time point.

5 TOR Models

In the TOR pathway, type 2A phosphatases (PP2As) control various cellular
functions. The phosphatases are modulated by the protein kinases Tor1p and
Tor2p. Rapamycin inhibits the TOR kinases which then leads to PP2A ac-
tivation. Tap42p and Tip41p regulate both the kinase and the phosphatases.
The core model of TOR signal transduction summarizes all available knowl-
edge [14]. But several aspects of the pathway are still unclear. Therefore 18
sets of reactions, that represent hypothetical biochemical features, were devel-
oped. These extensions together with the core model were then used to do
model selection [14].

The set of models that we consider consists of all plausible combinations of
the core model and the 18 extensions mentioned above. In principle, 218 combi-
nations are possible. After the removal of biochemically inconsistent hypotheses,
there remain 69′120 candidate models.

5.1 Experiments

The models used for testing were selected like this: First we used Matlab’s
K-means algorithm to cluster the whole set of models into 200 clusters. Then
the models closest to each of the cluster centers were chosen as representative
models for that cluster.

• All of the TOR models share the first 24 chemical species, those are used
as possible measurement species.

• After 0.7 seconds the concentrations of all the chemical species reach
steady-state, to be on the save side we use 50 time points between 0s
and 1.4s.

• To compute the integral in the Kullback-Leibler divergence, 104 Monte
Carlo samples are used.

• Since we don’t have any prior information on the probability of the models,
we use a uniform prior.
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Figure 1: Probability distributions of glucose concentration measurements at
t = 20 min predicted by the particle method, for different particle numbers k.

This leads to a set of 1200 different combinations of measurement species
and measurement time points. We use a parallel implementation to compute the
unscented transform and the mutual information. The lazy greedy algorithm
[15] is used to do the optimization.

Figure 4 shows the first twenty one most informative measurement time
points and species with the corresponding expected information gain for con-
ducting the measurements up to that measurement. The blue line shows the
online bound and the red line the offline bound for the expected information
gain. Even tough the offline bound on expected information gain is quite loose,
we can see that we are close to the optimum, because the expected information
gain is coming close to the online bound.
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