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SUPPLEMENTARY MATERIAL 
 

Model-based feature construction for multivariate decoding 

K.H. Brodersen, F. Haiss, C.S. Ong, F. Jung, M. Tittgemeyer, J.M. Buhmann, B. Weber, K.E. Stephan 

S1 Dataset 1 – experimental methods 

Surgical preparation and anaesthesia 

Experiments were performed in 3 adult male Sprague-Dawley rats weighing 250 g each. The 

animals were kept in cages in a ventilated cabinet with standardized conditions of temperature 

and light (night/day-cycle 12h/12h). Free access to food and water was ensured at all times. 

Surgical procedures and measurements were performed under isoflurane anaesthesia (2.5-3.5% 

during surgery and 1-1.5% during data acquisition). Surgery involved the cannulation of the right 

femoral artery and vein with PE-50 tubing containing saline, as well as a tracheotomy for artificial 

ventilation of the animal. The arterial catheter was used for the continuous monitoring of the 

arterial blood pressure and for withdrawal of blood for blood-gas analysis. After fixating an 

animal’s head in a stereotactic frame (Kopf Instruments, Tujunga, CA, USA), bucain injections 

were administered subcutaneously prior to the scalp incision. The skull above the barrel cortex (1 

mm caudal and 3 mm lateral from Bregma) was exposed after a midline incision and after 

disconnecting the temporal muscle from the skull. Using a dental drill (Bien Air Medical 

Technologies, Bienne, Switzerland) a craniotomy with a diameter of 4 mm was carried out above 

barrel cortex, after which the dura was carefully removed. Using a heating blanket, body 

temperature was kept at 37 °C. Blood gases were maintained within normal ranges by adjusting 

the ventilation parameters. Upon the completion of data acquisition, animals were euthanized 
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with a bolus of intravenous pentobarbital (200 mg/kg). All experimental procedures were 

approved by the veterinary authorities of the Canton of Zurich. 

Stimulation and recording 

Local field potentials (LFPs) were recorded using multielectrode silicon probes (NeuroNexus 

Technologies, Ann Arbor, MI, USA). One shank with 16 electrodes (impedance approx. 1 MΩ, 

spacing 100 µm) was gently inserted into barrel cortex by 1700 µm. Recordings were performed 

using a multichannel extracellular amplifier (MultiChannelSystems, Reutlingen, Germany; gain 

x5000, sampling frequency 20 kHz, band pass 1-5000 Hz). Voltage traces were band-pass filtered 

offline with digital filters (1-200 Hz) to uncover LFP signals. 

Experimental stimuli were presented using a glass capillary (length 5 mm) mounted to the tip of a 

piezo-bending actuator (Q220-A4-303YB, Piezo Systems, Woburn, MA, USA). The actuator was 

fixed on an articulated arm (Baitella, Zurich, Switzerland) to allow for accurate positioning of the 

stimulator. Movements of the bending actuator were calibrated using an optical Laser 

Micrometer (RX 03, Metralight, San Mateo, CA, USA). Two whiskers (dataset A1: whiskers E1 and 

D3; dataset A2: whiskers C1 and C3; dataset A3: whiskers D3 and �) were stimulated independently 

using two piezo-bending actuators that produced brisk rostral to caudal deflections. Stimuli 

involved a single cosine wave (frequency 120 Hz, amplitude approx. 500 µm). Each whisker was 

stimulated 300 times, in randomized order, leading to 600 sweeps of a duration of 2 s each. 

Electrophysiological recordings were started 100 ms prior to stimulation onsets. Inter-trial 

intervals were randomly jittered using a uniform distribution between 2200 and 2750 ms. An 

experimental control (dataset A4) was recorded by following precisely the same procedure, 

except that whisker stimulators were repositioned to be as close to the original whiskers (D3 and 

�) as possible without physically touching them. 
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S2 Dataset 2 – experimental methods 

Surgical preparation and implant 

In order to record event-related responses in the awake, unrestrained animal, a telemetric 

recording system (TSE Systems) was set up using chronically implanted epidural silverball 

electrodes above the left auditory cortex in 3 Lister hooded rats (cf. Jung et al., 2009). Prior to 

surgery, rats were placed in an exsiccator that was perfused with isoflurane (5%) mixed with 30% 

oxygen (O2) and 70% nitrous oxide (N2O). Once deeply anaesthetized, rats were transferred into a 

stereotactic frame and fixated using ear bars and a tooth bar. During surgery, animals were 

constantly inhaling a similar mixture of gases through a mask (isoflurane reduced to 2-3%). Using 

a heating pad, feedback-regulated by means of a rectal probe, body temperature was kept 

constantly at 37.5 °C. Guided by stereotaxic coordinates (Paxinos & Watson, 2007), two 

electrodes were positioned 5 mm posterior to Bregma and 7 mm (electrode 1) and 8 mm 

(electrode 2) lateral from the sagittal suture (depth 4 mm), targeting the primary and secondary 

auditory cortex, respectively (Doron, Ledoux, & Semple, 2002). A reference electrode was placed 

above the frontal sinus. The telemetry socket, to which electrodes were soldered, was fixed onto 

the head with dental cement. All experimental procedures were approved by the local 

governmental and veterinary authorities. 

Stimulation and recording 

Recordings began one week after surgery. At the beginning of each experiment, in order to allow 

for wireless data transfer, an EEG telemetry transmitter was attached to the implanted socket. 

Rats were anaesthetized briefly for this procedure. During the period of data acquisition, rats 
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were awake and placed in a cage (21 x 35 x 22 cm³) that ensured a reasonably constrained 

variance in the distance between the animal and the speakers (± 25 cm). 

All recordings were carried out in a sound-attenuated chamber. Stimuli consisted of bandpass-

filtered noise of different carrier frequencies (B1: standards 5-7 Hz, deviants 15-17 Hz; B2: 

standards 15-17 Hz, deviants 5-7 Hz; B3: standards 10-12 Hz, deviants 16-18 Hz). Each stimulus 

had a length of 50 ms, including a 5 ms ramp on either end, as depicted in Figure 7b. Initially, 

stimuli were presented in simple, homogeneous sequences. Subsequently, those two stimuli were 

chosen that evoked the highest amplitudes in the recorded signal. Standard and deviant stimuli 

were then presented pseudo-randomly with different deviant probabilities (B1: 0.1; B2: 0.2; B3: 

0.1). The recording window covered 90 ms before and 300 ms after the stimulus onset, leading to 

a total sweep length of 390 ms. The inter-trial interval was 210 ms. The three datasets comprised 

900, 500, and 900 trials, respectively. 
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S3 Additional information on analysis methods 

DCM specification for dataset 1 

In the context of model-based decoding of the first dataset, a single-region dynamic causal model 

for ERP data was specified and inverted using SPM8. Neural priors were chosen according to SEP 

settings. The neural model was an LFP model with 1 region. Given a true stimulus onset at 100 ms 

after the beginning of a sweep, we specified a time window of [90, 390] ms and an onset of 105 

ms. (Note that all times were converted to peristimulus times in the main text by shifting them so 

that the stimulus onset occurred at 0 ms.) Further settings included: detrend 1; subsample 1. The 

model was fitted individually to each trial. 

DCM specification for dataset 2 

For the second dataset, given that it comprised 2 recording sites, 3 alternative models for ERP 

data were specified: (i) a model with forward connections from region 1 to region 2, backward 

connections from region 2 to region 1, and stimulus input arriving in region 1; (ii) a model with 

forward connections from region 2 to region 1, backward connections from region 1 to region 2, 

and stimulus input arriving in region 2; (iii) a model with lateral connections between the two 

regions and stimulus input arriving in both region 1 and region 2. In all models, neural priors were 

chosen according to SEP settings. Given a true stimulus onset at 90 ms after the beginning of a 

sweep, we specified a time window of [80, 400] ms and an onset of 100 ms. (Again, all times were 

converted to peristimulus times in the main text.) Further settings included: detrend 1; subsample 

1. Using the first half of the data only, we assessed which model architecture yielded the highest 

model-based classification accuracy. We then applied this model to the second half of the data 

and reported the resulting accuracies. 
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Classification 

All classification analyses were based on a cross-validation scheme that was tailored to the 

characteristics of the datasets at hand. 

Dataset 1 (Section 3.1) comprised 600 trials per experiment (100 trials in the control condition). 

Overall conventional and model-based classification analyses were based on leave-20-out cross-

validation, i.e., 30 folds in the experimental datasets and 5 folds in the control (Figure 5). For the 

temporal analyses, carried out separately for each time bin, we used a computationally less 

expensive scheme by randomly splitting the data into 580 trials for training and 20 trials for 

testing, repeating the process 5 times (Figure 4). 

Dataset 2 (Section 3.2) contained 900, 500, and 900 trials in experiments B1, B2, and B3, 

respectively. Here, due to the larger number of examples, overall classification analyses were 

based on a randomized cross-validation scheme throughout, training on all but 20 examples and 

repeating the process 20 times (Figure 9). For the temporal analyses, carried out separately for 

each time bin, we randomly split the data into 890 trials for training (B2: 490 trials) and 10 trials 

for testing and repeated the process 30 times (Figure 8). 

Prior to classification, all examples were normalized (i.e., their norm was set to unity). In other 

words, they were represented as points on a �-dimensional sphere of radius � � 1, where �  is 

the number of features. 

In the case of ordinary (non-random) cross-validation, in order to avoid optimistic accuracy 

estimates that may result from temporal autocorrelation in the signal, we removed from each 

training set the two trials surrounding the test set. In addition, in order to prevent the learning 

algorithm from acquiring a strong bias towards one class (e.g., towards standard tones as 
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opposed to deviants), we balanced the training set within each cross-validation fold by removing 

surplus trials until both classes were of the same size. 

During the training phase of the support vector machine, we optimized the regularization 

parameter � by a simple linear search using inner 5-fold cross-validation on the training set. In the 

case of a nonlinear kernel, we carried out a grid search in log2 space instead to find a combination 

of kernel parameters that minimized the error rate on the inner test set. We then used these 

optimal parameters to train the classifier on the current fold-wise training set and make 

predictions on the corresponding test set. This nested procedure ensured that information from 

the test set was neither used when training the classifier nor when finding optimal parameters. 

All analyses were implemented in MATLAB 2009a to run in a parallelized fashion on a compute 

cluster at ETH Zurich using Platform LSF (http://www.platform.com/grids/platform-lsf). Some 

portions of the analysis used additional code from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), the 

Princeton MVPA toolbox v1.0 (http://www.csbmb.princeton.edu/mvpa/), and the LIBSVM library 

v2.9.1 (Chang & Lin, 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm/). 

S4 Sensitivity comparison between model-based decoding and conventional DCM analyses 

As described in the main text, we propose model-based decoding as a complementary approach 

to established Bayesian model selection (BMS) in situations where log-evidence based approaches 

are not applicable. However, as suggested by one of our reviewers, it might also be worth 

investigating whether model-based decoding offers higher or lower sensitivity than log-evidence 

based approaches in situations where both could be used. Specifically, one could compare �-

values obtained from model-based decoding to (equivalents of) �-values derived from Bayes 

factors in the context of conventional DCM and BMS. In the DCM analysis, one would model the 
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differences in class means in terms of changes in specified parameters, and then compare this 

model to a null model in which no changes in parameters (and thus no differences between class 

means) are allowed. Here, the equivalent of a �-value can be derived from the posterior model 

probabilities (i.e., one minus the conditional probability that the alternate model was better than 

the null model). 

Such a comparison is feasible but must be qualified carefully since the two approaches differ in 

several aspects. BMS-based �-values are the result of a fitting procedure that uses all available 

data, while classification operates on a strongly reduced feature space. Thus, one might generally 

expect model-based classification to be less sensitive than evidence-based model comparison. On 

the other hand, in the case of current DCM implementations for evoked responses, only a few 

parameters are allowed to change for explaining differences in observed responses (i.e., extrinsic 

connections strengths and the amplitude of excitatory postsynaptic potentials), whereas 

classification in a model-based feature space may utilize all parameters for identifying differences 

between trial types. In addition, a nonlinear classifier may allow for trial-type separation when no 

significant difference is revealed by class means alone. These considerations imply that the 

relative sensitivity of DCM/BMS vs. model-based classification may vary depending on the 

particular data set and model in question. 

Indeed, when carrying out the comparison on our two datasets, as described below, we obtained 

mixed results (see Table S4). For the first (somatosensory) dataset, we found decoding-based �-

values to be smaller than the �-values derived from the log Bayes factor in the conventional DCM 

analysis in two out of three cases, and both values were indistinguishable from zero in one case. 

In contrast, for the second (mismatch negativity) dataset, we found that in all three animals DCM-

based �-values were smaller than the �-values provided by our model-based approach. 
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In summary, the relative sensitivity of DCM/BMS and model-based decoding for establishing 

differences between trial types (or subject classes) is difficult to determine in full generality, but is 

likely depend on the data observed and the particular model used. Our results described here are 

thus of an anecdotal nature and should not be overly generalized. 

Animal Bayesian model 

comparison (BMS) 

 Model-based decoding Comment 

A1 0.9445 > 0 decoding more sensitive 

A2 0.5002 > 0 decoding more sensitive 

A3 0 ≈ 0 indistinguishable 

A4* 0.2193 < 0.589 decoding more specific 

B1 0 < 0.0113 BMS more sensitive 

B2 0 < 0.0023 BMS more sensitive 

B3 0.5046 < 0.9585 BMS more sensitive 

Table S4 – Comparison of �-values 

* Note that A4 is a control dataset where no stimuli where applied and where thus no difference should be detected. 

S5 Sensitivity comparison between model-based decoding and Hotelling’s �	-test 

Since model-based feature construction greatly reduces the dimensionality of the feature space, 

one may ask whether the two trial types can be discriminated without invoking a cross-validation 

scheme and using a conventional encoding model instead (see section ‘Dimensionality of the 

parameter space’ in the main text). Specifically, we compared the significance of above-chance 

decoding accuracies to the outcome of Hotelling’s 
�-test, the multivariate generalization of 

Student’s �-test. In our context, the null hypothesis states the absence of any difference between 

class-conditional means of model parameter estimates. In the case of decoding, we computed �-

values as the probability of obtaining the observed balanced accuracy under the null hypothesis 

that the classifier operates at chance. In the case of Hotelling’s 
�-test, we computed �-values as 
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the probability of the 
� statistic being equal or greater than the observed value under the null 

hypothesis of the between-condition Mahalanobis distance being zero (see Table S5). 

Given that our data represent averages and should conform to parametric assumptions by the 

central limit theorem, the Neyman-Pearson lemma states that Hotelling’s 
�-test should provide 

the most powerful test. However, it can be only be applied when there are fewer features than 

examples, which means that the decoding scheme described in the main text has a greater 

domain of application. 

For the first dataset, �-values were numerically indistinguishable from zero in all experimental 

cases (A1–A3); in the control case where no stimuli were applied (A4) and where no significant p-

value is expected, neither method yielded a false positive result. For the second dataset, there 

was no meaningful difference between decoding-based �-values and Hotelling’s �-values in two 

out of three cases, while only Hotelling’s �-value was significant for the third animal. These 

anecdotal results are consistent with the notion that Hotelling’s 
�-test provides the most 

powerful test when applicable. 

Animal Hotelling’s �	-test  Model-based decoding Comment 

A1 0 ≈ 0 indistinguishable 

A2 0 ≈ 0 indistinguishable 

A3 0 ≈ 0 indistinguishable 

A4* 0.17 < 0.31 decoding more specific 

B1 6.8 × 10-6 ≈ 3.1 × 10-6 indistinguishable 

B2 4.5 × 10-4 ≈ 1.2 × 10-4 indistinguishable 

B3 0.001 < 0.18 Hotelling’s more sensitive 

Table S5 – Comparison of �-values 

* Note that A4 is a control dataset where no stimuli where applied and where thus no difference should be detected. 
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SUPPLEMENTARY FIGURE LEGENDS 

Fig. 11 Evoked responses 

Separately for each trial type, the plot shows averaged responses from the channel that 

was used for model-based decoding of dataset 1 (channel 3). Each row represents one of 

the four experiments. The left column presents the data on a wide-interval [-100, 800] ms 

peristimulus time window, while the right column shows the same data with a focus on a 

shorter time window just after the stimulus. Each response is given as mean ± 2 standard 

errors of the mean, in µV. While the main recordings (A1–A3) show clear and differential 

responses to the two types of stimuli, the control recording (A4) is diffuse and does not 

deviate significantly from its baseline when other traces do (note that the y-axes are 

scaled individually to show the full amplitude of the response). 

Fig. 12 Scatter plot of two exemplary informative features 

The plot shows the distribution of trials in the two classes (blue and red), separately for 

each experiment of dataset 1 (i.e., corresponding exactly to the data shown in Fig. 11). 

Each trial is expressed in terms of its model parameters � and �. These two parameters 

were found to be particularly informative in dataset A2, while only � was of noteable 

importance in datasets A1 and A3. Taken together, the plots confirm the notion indicated 

by Figure 6: the higher the feature weight of a particular model parameter, the easier it is 

to distinguish the two experimental conditions along the corresponding axis. In dataset 3, 

for example, Figure 6 (rightmost plot) shows that the parameter � (stimulus onset) has 

the highest discriminative power. Consistent with this, Figure 12 (rightmost plot) shows 

that a hyperplane orthogonal to the x-axis can comfortably separate red and blue points 
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to a reasonable degree of accuracy, whereas a hyperplane orthogonal to the y-axis would 

fail to do so. 
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