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NICTA merger

Part of CSIRO, focus on ICT

Approx 1000 researchers, PhD students and university staff



Applications - Optimization - Models
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Machine Learning and Science
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What is machine learning?
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Machine learning is about prediction

Examples/features x1, . . . , xn ∼ X
Labels/annotations y1, . . . , yn ∼ Y
Predictor fw(x) : X→ Y

Estimate best predictor = training
Given data (x1, y1), . . . , (xn, yn), find a predictor fw(·).

No mechanistic model of the phenomenon
There is relatively large amounts of data (examples, x usually Rd)
The outcomes (labels, y usually binary) are well defined

Prediction 6= understanding
How can we use prediction to help with scientific research?



Today: focus on the predictor
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fw(x) : X→ Y

Label: Finding black holes

Exist physical models, we directly use images
There is relatively large amounts of data (examples)
Object localisation with crowd labels

Feature: Finding genetic associations

No mechanistic model of the phenomenon
High dimensional low sample size
Stability of feature selection

Predictor: Finding good experiments

Partial mechanistic model of the phenomenon
Estimate the expected information gain

Discuss challenges to applying machine learning



Not standard binary classifcation
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fw(x) : X→ Y



Finding black holes
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Goal: Automate radio cross-identification, a problem in astronomy

Too much data

Collaboration with ANU, ANTF, CAASTRO
Square kilometer array (South Africa and Australia)

Labelled by non-experts

Convert object localisation to binary classification
Deal with label noise



Radio cross-identification
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Optical Infrared X-ray Radio

Images of Centaurus A at different wavelengths.



The real data
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The same patch of sky in both radio (left) and infrared (right)



Localisation as binary classification
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Galaxy catalogue as candidates
Could scan a patch across the sky

Classify pairs of images

positive

negative

Features: Neural network image features, fluxes, radial distance
https://github.com/chengsoonong/crowdastro



Crowdsourcing labels

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 12

Radio Galaxy Zoo:
citizen science project to cross identify radio galaxies

Radio Galaxy Zoo
About 100000 of 177000 image pairs labelled.

5 volunteers per pair for compact sources
20 volunteers per pair for complex sources



How to find black holes
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Prior catalogues

Heuristic rules + expert human effort
Norris et. al. 2006

Annotation based on physical models
Fan et. al. 2015

Use set where both agree as gold standard

Many labels to one binary label

Logistic regression from sklearn
Majority vote
EM style algorithm to estimate ground truth
Raykar et. al. 2010, Yan et. al. 2010

Latent variable model

Noisy labels = ground truth + biased coin flip



Results
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Conclusion: Features meaningful, but pipeline can be improved.



Side note about label noise
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Latent variable
Assume that there is a hidden ground truth label, and model it.
Alger, Banfield, Ong, (in preparation)

Learning with label noise
During training, pretend that labels are noiseless, and assume that
the learning algorithm takes care of it.
Menon, van Rooyen, Ong, Williamson, ICML 2015

Model evaluation
How do we measure performance without ground truth?



What are good features?
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fw(x) : X→ Y



Genome wide association study
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Case-control studies
A cohort of sick individuals (cases) and healthy individuals (con-
trols) are genotyped and their corresponding binary phenotype are
recorded.

We use the framework of hypothesis testing

Hypothesis testing Given a case control study, test whether a particu-
lar SNP is associated with the phenotype.

Good biomarker? If difference is statistically significant
=⇒
SNP is associated with the phenotype.

bioinformatics.research.nicta.com.au/software/gwis/



Epistatic Interactions
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Genome Wide Interaction Search (GWIS)
Consider the association of all pairs of genotypes to phenotypes

Large search space

5000 individuals, 500,000 SNPs (WTCCC)
Need to tabulate 125 billion contingency tables

Classification based analysis
Focus on SNPs in case control studies
New statistical tests
Consider specificity and sensitivity
Gain over univariate ROC
CPU (≈ days) and GPU (≈ hours)
Store the top 1 million pairs

Web service
http://gwis1.research.nicta.com.au/
Goudey,...,Ong,...,Kowalczyk, BMC Genomics, 2013



p-values
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Interpreting p-values
Is 10−10 probability of association very significant?

Quote
... but a reliable method of procedure. In relation to
the test of significance, we may say that a phenomenon
is experimentally demonstrable when we know how to
conduct an experiment which will rarely fail to give us a
statistically significant result.
Fisher, The Design of Experiments, 1947, p. 14

Stability of scoring
We consider p-values as a score of association.

How stable is this score if we repeat the experiment?
How do we combine scores?

Challenges

Scores available for only the top-k examples
Scores from different sources not calibrated



How to represent ranks?
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Multiple ways to represent ranks

Ordered list of n objects selected from Ω

List of values [1, . . . , n] (the ranks of the object)

Normalised ranks ∈ (0, 1)

Permutation mapping R : Ω→ (0, 1)



Measuring Overlap
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Motivation
Given a set of replicated experiments, how do we measure overlap?

Examples

Perform repeated splits of the data
Experiments on different cohorts
Multiple sources of information

Challenges

Scores available for only the top-k examples
Scores from different sources not calibrated



Signal and Noise
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Set based overlap

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 23

Running example (6 objects)

A = [a, b, c, d, e, f ]

B = [a, b, e, f, c, d]

Jaccard Index
overlap =

|A ∩B|
|A ∪B|

Measuring stability

Easy to compute
Works for top-k lists
Consider the top-3 lists from above:

Jaccard index =
|{a, b}|
|{a, b, c, e}| =

1

2

Ignores the order given by scores



Spearman’s ρ
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Similar to Pearson’s correlation for the measure of dependence

Spearman’s ρ is a correlation measure between ranked lists

ρ(A,B) :=

∑
i(r

(i)
A − r̄A)(r

(i)
B − r̄B)√∑

i(r
(i)
A − r̄A)2

∑
i(r

(i)
B − r̄B)2

,

Running example:

ρ([a, b, c, d, e, f ], [a, b, e, f, c, d]) = 0.543

(Jaccard index = 1)

Need the same elements in A and B

ρ([a, b, c], [a, b, e]) ?



Spearman’s ρ on top k lists
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Simple idea
Define Spearman’s ρ for top k lists

Key observation
Any elements in list A that do not appear in list B must have a rank
higher than the number of elements in B

Running example (top-3)

A = [a, b, c, d, e, f ] and B = [a, b, e, f, c, d]

A3 = [a, b, c] and B3 = [a, b, e]

A3

B3→ = [a, b, c, e] and B3

A3→ = [a, b, e, c]

Spearman’s ρ = ρ(A3

B3→, B3

A3→) = 0.8



Spearman’s ρ on top k lists
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Extend the list
We expand lists A and B to complete rankings over the same set of
elements, denoting them as A

B→ and B
A→ respectively.

The missing values in the extension are given the average rank.

Running example (top-4)

A4 = [a, b, c, d] and B4 = [a, b, e, f ]

A4

B4→ = [1, 2, 3, 4, 5.5, 5.5] and B4

A4→ = [1, 2, 5.5, 5.5, 3, 4]

Makes no assumption about the order of the unranked objects

Other possible imputation approaches

Optimistic
Worst case

Bedő, Rawlinson, Goudey, Ong, PLoS ONE, 2014



Signal and Noise
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Spearman’s ρ
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Simulate two cohorts by splitting
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Measuring Overlap
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Motivation
Given a set of replicated experiments, how do we measure overlap?

Challenges

Scores available for only the top-k examples
Scores from different sources not calibrated

Model

Ranked list Instead of just using set intersection, we can use
the scores from GWIS to order the results
top k Traditional methods (Spearman’s ρ) requires ranks for
the whole list. We have incomplete information, but we know our
ranks are the top ones.
Multivariate Textbook Spearman’s ρ is for computing correla-
tion between two ranks. We want to compute the correlation be-
tween multiple ranked lists.
Bedő, Ong, JMLR (to appear)



Multiple replicates
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*-Seq
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dsRNA-Seq

FRAG-Seq

SHAPE-Seq

PARTE-Seq

PARS-Seq

DMS-Seq
...

Nucleo-Seq

DNAse-Seq

Sono-Seq

ChIA-PET-Seq

FAIRE-Seq

NOMe-Seq

ATAC-Seq
...

GRO-Seq

Quartz-Seq

CAGE-Seq

Nascent-Seq

Cel-Seq

3P-Seq
...

https://liorpachter.wordpress.com/seq/



Integrating different sources of data
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Varia%on	  
o  SNP	  
o  Structural	  
o Methyla/on	  
o  Expression	  
o  	  	  …	  

A B C D E F G H I J K L

ID3023	  

ID4454	  

ID7675	  

ID2283	   Sequence	  Analysis	  

Associa%on	  Study	  



Rank aggregation
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Modeling using Spearman’s correlation

Stability of feature selection
How to measure overlap?

ρ(R1, . . . , Rd)

Rank aggregation
How to combine different sources of information?
Macintyre, Yepes, Ong, Verspoor, PeerJ, 2014



Optimal aggregator: geometric mean
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How to combine different sources of information?
We maximise multivariate correlation

R∗ = arg max
R

ρ(R,R1, R2, . . . , Rd).

Theorem The aggregator that maximises multivariate Spearman’s cor-
relation is the product of the normalised ranks.

Use the geometric mean

NOT pairwise correlation
Instead of decomposing the association into a combination of pair-
wise similarities ρ(R,R1), ρ(R,R2), . . . , ρ(R,Rd).

Learning weighting of experts
We can also do supervised learning to rank

Bedő, Ong, JMLR (to appear)



What are good biomarkers?
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Genome Wide Association Studies

Which mutations are associated with tall poppies?
Identify biomarkers with hypothesis tests

Finding stable biomarkers

Split cohort into two (cross validation)
Investigate rank correlation between scores

Integrating information via ranks

Multivariate Spearman correlation using copulas
Geometric mean is the optimal aggregator



What to measure?
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fw(x) : X→ Y



Active Learning / Expt. Design
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Use predictor to identify good candidates

Annotate top-k items
Confidence interval improves performance
Explore - exploit tradeoff

Krause, Ong, NIPS 2011

Finding black holes and redshifts

Machine learning to classify images
Show 10 candidates to expert daily

Collaboration with ANU, ANTF, CAASTRO

Glucose metabolism in Yeast

Multiple possible models
Design biological experiments that
maximise information gain

Collaboration of ETHZ with SystemsX Switzerland



What is a model?
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Bergman insulin dependent glucose metabolism model.



TOR pathway
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Finding good models
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Optimised experimental design
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Measurements
Experiments produce readouts y(ti),
grouped into datasets Yπ for an experiment π.

Bayes rule
For a particular model f , (taking care of parameters)

p(f |Yπ) =
p(Yπ|f )p(f )

p(Yπ)

Information gain
We want to take measurements that change model probabilities

DKL[p(f |Yπ)||p(f )] =
∑

f∈F
p(f |Yπ) log2 p(f |Yπ)/p(f )

Marginalise over possible outcomes
Maximise expected information gain (tough computational problem)

argmax
π

EYπDKL[p(f |Yπ)||p(f )]



Experiments, experiments, ...
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What is a biomarker?

How to measure?
Use adaptive experimental design to
identify important time series.
Busetto et. al. Near-optimal experimental design for

model selection in systems biology , 2013

What to measure?
Combine various sources of informa-
tion for robust decision making.
Macintyre et. al. Associating disease-related genetic

variants in intergenic regions to the genes they impact,

2014

Where to measure?
Use expert domain knowledge to con-
struct dynamical models.
Brodersen et. al. Generative embedding for model-

based classification of fMRI data, 201 1



A more philosophical section...
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fw(x) : X→ Y

Label: Finding black holes

Exist physical models, we directly use images
There is relatively large amounts of data (examples)
Object localisation with crowd labels

Feature: Finding genetic associations

No mechanistic model of the phenomenon
High dimensional low sample size
Stability of feature selection

Predictor: Finding good experiments

Partial mechanistic model of the phenomenon
Estimate the expected information gain

Discuss challenges to applying machine learning



Applications - Optimization - Models
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Scoring candidates - ABCDE
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Active Learning

Choose a particular example to label using heuristics
Annotator assumed to provide ground truth

Bandits

Select a choice from a set of actions
Simple algorithms with theoretical guarantees
Manage uncertainty with repeated sampling

Choice theory

Aggregate set of ranks into one ordering
Economics and social science, impossiblity theorems

Designing Experiments

Choose a set of trials to measure
Optimisation algorithms with theoretical analysis
Information theory, real random variables



ML Open Source Software
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Wider adoption of methods

Domain experts can use machine learning core
Available for teaching

Scientific reproducibility

Fair comparison of methods
Access to scientific tools

Community growth

“Given enough eyeballs, all bugs are shallow”
Combination of advances

mloss.org mldata.org



Plug and Pray
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Machine Learning Open Source Software
Do We Need Hundreds of Classifiers
to Solve Real World Classification Problems?
jmlr.org/papers/v15/delgado14a.html

Spoiler: No

Usability and Reproducibility

(too much) focus on new algorithms
Documentation, modularity issues
Literate programming
yihui.name/knitr jupyter.org

Scientific computing workflows
galaxyproject.org

Dream: App Bazaar for data science



Bumpy road to data science
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Two classes of objects

Data
images, counts, raw sensor data, output of simulation, results

Analysis
visualisation, user interface, predictors, observational statistics

Multi-sided platform

Decentralised architecture, not walled garden
Enable direct interaction between data owner and analytics sys-
tem
Network effect: each new entrant benefits from whole network

Not just tech people
Domain experts, data managers, project management



Wish list
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We need an open federated framework for scientific discovery

Provenance, trust and reliability

Management of legal rights

Uncertainty propagation

Confidentiality and privacy

Complex workflows

Late binding ontologies

Cross organisation, jurisdiction, technical boundaries

Decouple technique from problem

No proprietary control

*-as-a-service



One more challenge

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 51

McCulloch and Pitts, 1943

Multilayer perceptron

Deep neural networks
32 × 28 × 28 32 × 14 × 14 32 × 10 × 10 32 × 5 × 5 80032 × 32

4 × 4 convolution 2 × 2 max pooling4 × 4 convolution 2 × 2 max pooling



One more challenge
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McCulloch and Pitts, 1943

Multilayer perceptron

Deep neural networks

Today’s ML systems

How to analyse two systems?



Conclusion
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Prediction 6= understanding
How can we use prediction to help with scientific research?

Three extensions

Not standard binary classification fw(x) : X→ Y

What are good features? fw(x) : X→ Y

What to measure? fw(x) : X→ Y

Plug and pray

Software, software, software
Build the road and rail for data science
Understand combinations of machine learning components



Thank You
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Prediction 6= understanding
How can we use prediction to help with scientific research?

Three extensions

Not standard binary classification fw(x) : X→ Y

What are good features? fw(x) : X→ Y

What to measure? fw(x) : X→ Y

Plug and pray

Software, software, software
Build the road and rail for data science
Understand combinations of machine learning components

Please make your research open

www.ong-home.my



Copulas
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Intuition
For continuous random variables, copulas model the dependence
component after discounting for univariate marginal effects

Probabilistic definition
Let U1, . . . , Ud be real random variables ∼ U([0, 1]).
A copula function C : [0, 1]d −→ [0, 1] is a joint distribution

Cθ(u1, . . . , ud) = P (U1 6 u1, . . . , Ud 6 ud)

The same Gaussian copula function



Copulas and Spearman’s ρ
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Spearman’s ρ can be expressed in terms of the copula

ρ(A,B) = 12

∫

[0,1]2
C(u, v)dudv − 3

Empirical copula

Cn(u, v) =
1

|Ω|
∑

x∈Ω

1 (R(x) 6 u, S(x) 6 v)

Why do the math?

Unclear how to extend formula for Spearman’s correlation.
Multivariate distributions⇒ multivariate copula.



Multivariate Spearman’s ρ
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A multivariate extension of Spearman’s ρ
For a d dimensional set of random variables u, the multivariate
Spearman’s ρ is given by

ρ(R1, . . . , Rd) = Q(C, π) = h(d)

(
2d
∫

[0,1]d
π(u) dC(u)− 1

)
,

where
h(d) =

d + 1

2d − (d + 1)
.

Empirical multivariate Spearman’s corelation

ρn(R1, . . . , Rd) = h(d)


2d

n

∑

x

d∏

j=1

Rj(x)− 1


 .

No negative correlation
As the number of dimensions increases, the lower bound of Spear-
man’s ρ tends to zero
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