

What is a scientific instrument?

Cheng Soon Ong | 11 October 2022 Canberra Data Scientists Meetup Statistical Society Canberra Branch

Australia's National Science Agency

cheng-soon.ong@data61.csiro.au https://research.csiro.au/mlai-fsp/

I would like to acknowledge the Ngunnawal - Ngambri people as the Traditional Owners of the land that we're meeting on today, and pay my respect to their Elders past and present.

What is the distribution of running speeds?

a group of academics running a marathon while holding a microscope, anime style (DALL-E)

Distribution of marathon finishing times (n=9.5m)

How you measure affects what you observe

Allen, Dechow, Pope, Wu (2016) Reference-Dependent Preferences: Evidence from Marathon Runners

What is a scientific instrument?

- What is data?
- How to deal with non-tabular data?
 - Case studies in environmental observation (microscope, satellite, computer)
- Where does data come from?
 - Case study in genome biology (organism)
- Opportunities and challenges for data science

A fake HR database

Name	Gender	Degree	Postcode	Age	Annual salary
Aditya	М	MSc	W21BG	36	89563
Bob	Μ	PhD	EC1A1BA	47	123543
Chloé	F	BEcon	SW1A1BH	26	23989
Daisuke	Μ	BSc	SE207AT	68	138769
Elisabeth	F	MBA	SE10AA	33	113888

Data in numerical format

Gender ID	Degree	Latitude	Longitude	Age	Annual Salary
	_	(in degrees)	(in degrees)	-	(in thousands)
-1	2	51.5073	0.1290	36	89.563
-1	3	51.5074	0.1275	47	123.543
+1	1	51.5071	0.1278	26	23.989
-1	1	51.5075	0.1281	68	138.769
+1	2	51.5074	0.1278	33	113.888
Î	1	t	f		
binary	ordered	nostcode	Y		
	category	posicoue			

CSIRC

Predict salary given age (ML is about prediction)

Who we are Australia's national science agency

One of the world's largest multidisciplinary science and technology organisations 5,200+ dedicated people working across 58 sites globally

State-of-the-art national research infrastructure We delivered \$7.6 billion of benefit to the nation in FY21

Global megatrends in data and AI

Australia's National Science Agency

Our Future World

Global megatrends impacting the way we live over coming decades

July 2022

- 5. **Diving into digital:** the pandemic-fuelled a boom in digitisation, with teleworking, telehealth, online shopping and digital currencies becoming mainstream. Forty percent of Australians now work remotely on a regular basis and the future demand for digital workers expected to increase by 79% from 2020 to 2025.
- 6. **Increasingly autonomous:** there has been an explosion in artificial intelligence (AI) discoveries and applications across practically all industry sectors over the past several years. Within the science domain the use of AI is rising with the number of peer-reviewed AI publications increasing nearly 12 times from 2000 to 2019.

https://www.csiro.au/en/research/technology-space/data/our-future-world

MLAI Future Science Platform

How to use prediction to help perform scientific discovery?

30 postdoc researchers 10 senior scientists 1 vision

Machine learning for scientific discovery

Gender ID	Degree	Latitude (in degrees)	Longitude (in degrees)	Age	Annual Salary (in thousands)
-1	2	51.5073	0.1290	36	89.563
-1	3	51.5074	0.1275	47	123.543
+1	1	51.5071	0.1278	26	23.989
-1	1	51.5075	0.1281	68	138.769
+1	2	51.5074	0.1278	33	113.888

How to deal with non-tabular data?

Towards automated detection of harmful algae and toxic blooms

- Microscopy on water samples
- Computer vision
 - Create bounding boxes
 - Classify algae species

https://blog.csiro.au/using-artificialintelligence-to-detect-harmful-algae/

- Damaging impact on the environment and aquatic organisms
- **2012** Tasmanian east coast dinoflagellate *Alexandrium catenella* closed the seafood industry
- **2016** Murray Darling River toxic blue-green algae impacted drinking water, agriculture or recreation
- **2018/19** Murray Darling River toxic blue-green algae resulted in high fish mortalities

Aerial Associates Photography, Inc. photo by Zachary Haslick

Heterosigma akishiwo bloom, photo by V. Trainer, NOAA

Mask R-CNN Results – Mixed Species Assemblage

Modern maps augment our understanding of events

Directions

The Guardian (25/2/21)

Save

Samuel Dunn (1794)

Additional prediction

Canberra Times (11/3/21)

Plant biodiversity mapping in Australia with satellite imagery

- Diversity of plants is key in maintaining stability and productivity of ecosystems
- Spaceborne remote sensing

Yiqing Guo

Y. Guo, K. Mokany, C. Ong, P. Moghadam, S. Ferrier, and S. R. Levick (2022). Quantitative assessment of DESIS hyperspectral data for plant biodiversity estimation in Australia. IGARSS 2022.

Study Area

We focused on two regions in southeast Australia

- Southern Tablelands
- Snowy Mountains

	Southern Tablelands	Snowy Mountains
Number of Samples	44	29
Geo-extent	34°12'26"–34°39'07"S 150°05'57"–150°40'51"E	35°43'58"–36°16'30"S 148°23'16"–148°39'02"E
Sampling Time	Feb 19, 2017~Dec 07, 2017	Feb 24, 2016~Dec 13, 2017
Plot Size	400 sq m	400 sq m

Plant Species Richness (Alpha Diversity)

Spectral Reflectance for Low, Intermediate, and High Species Richness Plots

Deep learning provides tools to create embeddings

Raw data

A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models

- Use domain knowledge
- Evolution of spatial information
 - More efficient
 - Predictive uncertainty
 - Enable scenario planning

Wildfire simulation toolkit https://research.csiro.au/spark/

Model emulation

Where does data come from?

Adaptive design

- Genomic sequencing revolution
 - Fast and cheap
 - Portable
- Biological factories
 - Drug design
 - Alternative foods

Which genome should we grow?

- Working definition of 'synthetic biology': The design and construction of DNA-encoded parts, devices, machines, and organisms; and their application for useful purposes.
- Experimental science domains
 - Integrative Biological Modelling
 - Engineering Novel Biological Components
 - Assembling Novel Biosystems
- Application areas
 - Mosquito borne diseases
 - Bacterial biofilms
 - Chemical synthesis using yeast

https://research.csiro.au/synthetic-biology-fsp

Janet Reid Alison Rice

CyBio@FeliX CHOICE™Head

Still too many options to try!

- Each option has a measurable outcome
 - Efficacy of drug
 - Amount of protein
- Study conditions limit the precision we can measure

- Multi armed bandits
 - Maximise outcomes
 - Trade of exploration and exploitation

Australian · \$\$\$\$

Algorithms

Mengyan Zhang, ANU

1. A (Bayesian) regression algorithm which predicts both

- Mean
- Uncertainty

2. An online/batch algorithm which recommends sequences to design Multiarmed Bandits Algorithms: DESIGN

Al recommends good designs

TTTAAGANNNNNNTATACATATG-20Feature-1

- Hard to search by evolving sequences
- 4 experimental cycles
- 35% stronger than engineered sequence

Zhang, Holowko, Hayman Zumpe, and Ong, Machine learning guided design for ribosome binding site. ACS Synthetic Biology, 2022

Exploration-Exploitation Trade-off

- Exploration: unknown (untested) RBS design space with potentially high label
- Exploitation: querying areas that are predicted to give relatively high labels.

Which genome should we grow?

How can a statistician help?

What is deep learning?

- Current progress is driven by benchmarks
- Categories are slippery
- Define your tasks carefully

AI and the Everything in the Whole Wide World Benchmark

Inioluwa Deborah Raji Mozilla Foundation, UC Berkeley rajiinio@berkeley.edu **Emily M. Bender** Department of Linguistics University of Washington

Amandalynne Paullada Department of Linguistics University of Washington

Emily Denton Google Research Alex Hanna Google Research

Responsible AI

- Predict based on observations
- Observations may not be suitable for the task
- Task may be poorly specified

- Scaling laws still growing
- Some exponential time problems can be solved efficiently
- Compositions and backpropagation

There and Back Again

A Tale of Slopes and Expectations

Cheng Soon Ong Data61, CSIRO chengsoon.ong@anu.edu.au \$\$ @ChengSoonOng

NeurIPS Tutorial, December 2020

Marc Peter Deisenroth University College London m.deisenroth@ucl.ac.uk \$\vert @mpd37

In 2022: (6 Apr) Dall-E 2 (23 May) Imagen (22 Aug) Stable Diffusion (29 Sep) Make-A-Video (6 Oct) Imagen-video

Machine learning for combinatorial optimization: A methodological tour d'horizon

Yoshua Bengio^{c,b}, Andrea Lodi^{a,b,*}, Antoine Prouvost^{a,b}

European Journal of Operational Research

ARTIFICIAL INTELLIGENCE

AUTHOR : C. Adams :

EDITOR/ART : R. Ghrist :

Big data paradox

- Observation affects data
- Law of large populations
 - US elections 2016
 - Sample size : n=2.3m \rightarrow 400
- Adaptive experiments result in non-independent data

Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 US presidential electi<mark>on</mark>

Xiao-Li Meng

Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry

ECEMBER 2019

FDA U.S. FOOD & DRUG

Causality

• Reinvent the language of statistical inference

What is a scientific instrument?

How to use prediction to help perform scientific discovery?

- Scientific discovery has two phases
 - Observation
 - Experimentation
- Non-tabular data
 - Deep learning to find good embeddings
 - Model complex labels
 - Include domain knowledge
- Exploration-exploitation tradeoff
 - Use knowledge to measure better data

cheng-soon.ong@data61.csiro.au https://research.csiro.au/mlai-fsp/

