

Human in the Loop Machine Learning

Cheng Soon Ong 9 July 2019 – Bukalapak, Jakarta

www.data61.csiro.au

Given some data

Classify blue plus vs red triangles, based on features

Fit a model to data

Estimate a Gaussian for each class conditional

Build a classifier

Compute the posterior probability of blue plus

What is Machine Learning?

Machine Learning is about prediction Examples/covariates/features Labels/annotations/target variable

Predictor

$$f_{oldsymbol{w}}(oldsymbol{x}):\mathcal{X}
ightarrow\mathcal{Y}$$

- Estimate the best predictor = training
- No mechanistic model of the phenomenon
- There are many examples
- The outcomes (labels) are well defined (usually binary)

$$egin{aligned} oldsymbol{x}_1, \dots, oldsymbol{x}_n &\sim oldsymbol{\lambda} \ oldsymbol{y}_1, \dots, oldsymbol{y}_n &\sim oldsymbol{J} \end{aligned}$$

Data lifecycle

- . Can I load your data using pandas or numpy?
- 2. Confounders, missing values, scale, units, encoding
- 3. Define the problem you want to answer:
 - The business/scientific problem
 - The performance metric
 - The model for the predictor
- 4. Run sklearn or statsmodels (machine learning part) Do not train on the test set.
- 5. Convert predictions into human friendly form for decision making

Prediction \neq **understanding** \neq **taking action**

How can we use prediction to help humans perform discovery?

$$f_{oldsymbol{w}}(oldsymbol{x}):\mathcal{X}
ightarrow\mathcal{Y}$$

Human in the Loop Machine Learning

- Use a combination of human experts and machine learning predictions
- This talk:

Where should the machine ask for help?

What is scientific discovery?

Francis Bacon, credited with the modern scientific method

CSIRO

DATA

Scientific discovery with machine learning

 $f_{oldsymbol{w}}(oldsymbol{x}):\mathcal{X}
ightarrow\mathcal{Y}$

$|f_{oldsymbol{w}}(oldsymbol{x}):\mathcal{X}| o\mathcal{Y}|$

- Assume that domain knowledge is captured by a predictor
- Use predictor to decide where to measure (ABCDE)
- (A) Active Learning
- (B) Bandits / Bayesian Optimisation
- (C) Choice Theory
- (DE) Design of Experiments

A – Active Learning

Want to build a classifier without paying for a lot of labels

A - Active Learning

- Choose a particular example to label using heuristics
- Annotator assumed to provide ground truth
- Examples:
- Uncertainty sampling (sample near the decision boundary, or maximal variance)
 - Committee of classifiers (where they disagree)

Tran, Ong, Wolf, Combining active learning suggestions, PeerJ, 2018

B – Bandits / Bayesian Optimisation

Want to maximise the outcome of different choices

B – Bandits / Bayesian Optimisation

Select a choice from a set of actions. Maximise reward/payoff from each action

- Simple algorithms with theoretical guarantees
- Manage uncertainty with repeated sampling

Krause, Ong, Contextual Gaussian Process Bandit Optimization, NIPS 2011

C – Choice Theory

Want to integrate different sources of information

C – Choice Theory

Main idea

Aggregate set of ranks into one ordering (combine predictions)

- Economics and social science, impossiblity theorems

Equivalent representation of ranks

- Ordered list of n objects selected from Ω
- List of values $[1, \ldots, n]$ (can be normalised to $\in (0, 1)$)
- Permutation mapping R : $\Omega \rightarrow (0, 1)$

Combine by using the geometric mean

Justin Bedő, Cheng Soon Ong, Multivariate Spearman's rho for Aggregating Ranks Using Copulas, JMLR 2016

DE - Design of Experiments

Glucose metabolism in Yeast

Multiple possible models

Design biological experiments that maximise information gain

Busetto, Hauser, Krummenacher, Sunnåker, Dimopoulos, Ong, Stelling and Buhmann. Near-optimal experimental design for model selection in systems biology, Bioinformatics 2013

What is a model?

Bergman insulin dependent glucose metabolism model.

Finding good models

Optimised experimental design (I)

Measurements

Experiments produce readouts $y(t_i)$, grouped into datasets Y_{π} for an experiment π .

Bayes rule

For a particular model f, (taking care of parameters)

$$p(f|Y_{\pi}) = \frac{p(Y_{\pi}|f)p(f)}{p(Y_{\pi})}$$

Optimised experimental design (II)

Information gain

- We want to take measurements that change model probabilities
- $D_{KL}(p(f|Y_{\pi})|p(f)) = \sum_{f} p(f|Y_{\pi}) \log p(f|Y_{\pi})/p(f)$
- Marginalise over possible outcomes
- Maximise expected information gain (tough computational problem)
 - $argmax_{\pi} \mathbb{E}_{Y_{\pi}} D_{KL}(p(f|Y_{\pi})||p(f))$

Scientific discovery with machine learning

How can we use prediction to help human experts perform discovery?

$$f_{\boldsymbol{w}}(\boldsymbol{x}): \mathcal{X} \to \mathcal{Y}$$

- Domain knowledge to Data
 Human in the loop ML
- Where to measure
- Use predictor to decide where to measure (ABCDE)
- (A) Active Learning
- (B) Bandits / Bayesian Optimisation
- (C) Choice Theory
- (DE) Design of Experiments

The Curious Journalist's Guide to Data

TOW CENTER

JRNALISM

OR DIGITAL

Jonathan Stray

THE

ROYAL

SOCIETY

MADE BY

ELLEN BROAD

THE QUEST FOR COMMON GROUND

BETWEEN HUMANS AND ROBOTS

MARKOFF

ne answers you get depend on the questions you as Thomas S. Kuhn

JOHN

Machine learning: the power and promise of computers that learn by example

MATHEMATICS FOR MACHINE LEARNING

Marc Peter Deisenroth A. Aldo Faisal Cheng Soon Ong

mml-book.com

THANK YOU

Data61 CSIRO

Cheng Soon Ong

e cheng-soon.ong@data61.csiro.auw ong-home.my

www.data61.csiro.au