

Machine Learning for Scientific Discovery

Cheng Soon Ong

Machine Learning Research Group NICTA Canberra

4 December 2014 2014 Australian Frontiers of Science

www.ong-home.my/download/frontiers2014.pdf

Machine Learning and Physics

What is machine learning?

Machine learning is about prediction

Examples/features	$x_1,\ldots,x_n\sim\mathfrak{X}$
Labels/annotations	$y_1, \ldots, y_n \sim \mathcal{Y}$
Predictor	$f_{\mathbf{w}}(x): \mathfrak{X} \to \mathfrak{Y}$

Estimate best predictor = training

Given data $(x_1, y_1), \ldots, (x_n, y_n)$, find a predictor $f_{\mathbf{w}}(\cdot)$.

- No mechanistic model of the phenomenon
- \checkmark There is relatively large amounts of data (examples, x usually \mathbb{R}^d)
- \checkmark The outcomes (labels, y usually binary) are well defined

$\textbf{Prediction} \neq \textbf{understanding}$

How can we use prediction to help with scientific research?

What are good features?

$f_{\mathbf{w}}(x): \mathbf{\mathfrak{X}} \to \mathbf{\mathfrak{Y}}$

What are good biomarkers?

Genome Wide Association Studies

- Which mutations are associated with tall poppies?
- Identify biomarkers with hypothesis tests

Finding stable biomarkers

- Split cohort into two (cross validation)
- Use p-value as a score
- Investigate rank correlation between scores

bioinformatics.research.nicta.com.au/software/gwis/

Not standard binary classifcation

$f_{\mathbf{w}}(x): \mathcal{X} \to \mathbf{\mathcal{Y}}$

Gene finding

Predict a sequence of binary decisions

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 7

Improving annotation

Improving well studied genomes

	Total	Tested	Confirmed	Fraction
New genes	2197	57	24	42%
Missed unconf. genes	205	24	2	8%

Annotating new genomes

Unknown objects

Identifying wheel defects in trains

- Wheel defects destroy infrastructure
- Classify type of defect from time series

Collaboration with Swiss National Railway

Classifying celestial objects

- Skymapper southern sky survey
- Rare objects not available at training

Discussion with Christian Wolf, RSAA, ANU

What to measure?

$f_{\mathbf{w}}(x): \mathfrak{X} \to \mathfrak{Y}$

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 10

Active Learning / Expt. Design

Use predictor to identify good candidates

- Annotate top-k items
- Confidence interval improves performance
- Explore exploit tradeoff

Glucose metabolism in Yeast

- Multiple possible models
- Design biological experiments that maximise information gain

Collaboration with SystemsX Switzerland

Finding supernovae

- Machine learning to classify images
- Show 10 candidates to expert daily

Discussion with Richard Scalzo at RSAA, ANU

Challenges to ML4Science

Cheng Soon Ong: Machine Learning for Scientific Discovery, Page 12

What is the keyword? (1)

Training

www.cs.uml.edu/~saenko/projects.html#data

What is the keyword? (1)

Training

www.cs.uml.edu/~saenko/projects.html#data

NICTA Deployed

Domain adaptation

What is the keyword? (2)

https://www.youtube.com/watch?v=YpdCvbJI2eg

What is the keyword? (2)

G(Noise) of GoDec

L(Low-rank) of GoDec

S(Sparse) of GoDec

L(Low-rank) of RPCA

S(Sparse) of RPCA

sites.google.com/site/godecomposition/home

Robust principal component analysis

ML Open Source Software

Wider adoption of methods

- Domain experts can use machine learning core
- Available for teaching

Scientific reproducibility

- Fair comparison of methods
- Access to scientific tools

Community growth

- "Given enough eyeballs, all bugs are shallow"
- Combination of advances

Plug and Pray

Machine Learning Open Source Software

Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? jmlr.org/papers/v15/delgado14a.html Spoiler: No

Usability and Reproducibility

- (too much) focus on new algorithms
- Documentation, modularity issues
- Literate programming ipython.org/notebook.html yihui.name/knitr jupyter.org
- Scientific computing workflows galaxyproject.org

Dream: App Bazaar for data science

Summary

$\textbf{Prediction} \neq \textbf{understanding}$

How can we use prediction to help with scientific research?

Three extensions

- What are good features? $f_{\mathbf{w}}(x) : \mathfrak{X} \to \mathcal{Y}$
- Not standard binary classification $f_{\mathbf{w}}(x): \mathfrak{X} \to \mathcal{Y}$
- **.** What to measure? $f_{\mathbf{w}}(x) : \mathfrak{X} \to \mathfrak{Y}$

Plug and pray

- Finding the right keyword
- Software, software, software

Thank You

$\textbf{Prediction} \neq \textbf{understanding}$

How can we use prediction to help with scientific research?

Three extensions

- What are good features? $f_{\mathbf{w}}(x) : \mathfrak{X} \to \mathfrak{Y}$
- **Solution** Not standard binary classification $f_{\mathbf{w}}(x) : \mathcal{X} \to \mathcal{Y}$
- **.** What to measure? $f_{\mathbf{w}}(x) : \mathfrak{X} \to \mathfrak{Y}$

Plug and pray

- Finding the right keyword
- Software, software, software

Please make your research open

www.ong-home.my

References

Open Science

Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, et. al. The need for open source software in machine learning. Journal of Machine Learning Research, 8:2443âĂŞ2466, 2007.

Joaquin Vanschoren, Mikio Braun, Cheng Soon Ong, Open Science in Machine Learning, Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG) 2013, Modena, Italy

Mikio L. Braun, Cheng Soon Ong, Open Science in Machine Learning. Book chapter in Implementing Reproducible Research, 2014

Stability of feature selection

Justin Bedő, David Rawlinson, Benjamin Goudey, Cheng Soon Ong, Stability of bivariate GWAS biomarker detection PLoS ONE, 9(4), e93319

Gene finding

Gabriele Schweikert, Jonas Behr, Alexander Zien, Georg Zeller, Cheng Soon Ong, SÃűren Sonnenburg and Gunnar RÃďtsch. mGene.web: a web service for accurate computational gene finding. Nucleic Acids Research, Volume 37, Web Server Issue, 2009.

Gabriele Schweikert, et. al. mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research, 19:2133–2143, 2009.

Confidence sets

Fan Shi, Cheng Soon Ong, Christopher Leckie. Applications of Class-Conditional Conformal Predictor in Multi-Class Classification International Conference on Machine Learning and Applications, 2013

Active Learning

Alberto Giovanni Busetto, Cheng Soon Ong and Joachim M. Buhmann. Optimized Expected Information Gain for Nonlinear Dynamical Systems. In Proceedings of the International Conference on Machine Learning, pages 97–104, 2009.

Alberto Giovanni Busetto, et. al. Near-optimal experimental design for model selection in systems biology Bioinformatics, 29 (20): 2625-2632. doi:10.1093/bioinformatics/btt436

Andreas Krause, Cheng Soon Ong. Contextual Gaussian Process Bandit Optimization. Advances in Neural Information Processing, 2011.